人教版七年级下册第七章 平面直角坐标系综合与测试教案
展开1、掌握坐标变化与图形平移的关系;
2、能利用点的平移规律将平面图形进行平移,会根据图形上点的坐标的变化,来判定图形的移动过程.
重点难点:
坐标变化与图形平移的关系是重点;坐标变化与图形平移的关系运用是难点.
教学过程:
一、导入新课
上节课我们学习了用坐标表示地理位置,体现了直角坐标系在实际中的应用,本节课我们研究直角坐标系的另一个应用——用坐标表示平移..
二、图形的平移与图形上点的变化规律
首先我们研究点的平移规律.
(1)将点A(-2,-3)向右平移5个单位长度,得到点A1,在图上标出它的坐标,点A的坐标发生了什么变化?把点A向上平移4个单位长度呢?
将点A向右平移5个单位长度,横坐标增加了5个单位长度,纵坐标不变;将点A向上平移4个单位长度,纵坐标增加了4个单位长度,横坐标不变.
(2)把点A向左或向下平移4个单位长度,点A的坐标发生了什么变化?
将点A向左平移4个单位长度,横坐标减少了4个单位长度,纵坐标不变;将点A向下平移4个单位长度,纵坐标减少了4个单位长度,横坐标不变.
从点A的平移变化中,你知道在什么情况下,坐标不变吗?在什么情况下,坐标增加或减少吗?
将点向左右平移纵坐标不变,向上下平移横坐标不变;将点向右或向上平移几个单位长度,横坐标或纵坐标就增加几个单位长度;向左或向下平移几个单位长度,横坐标或纵坐标就减少几个单位长度.
再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化?
三、图形上点的变化与图形平移的规律
对一个图形进行平移,就是对这个图形上所有点的平移,因而这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.
例:如图(1),三角形ABC三个顶点坐标分别是A(4,3),B(3,1),C(1,2).
(1)将三角形ABC三个顶点的横坐标都减去6,纵坐标不变,分别得到点A1、B1、C1,依次连接A1、B1、C1各点,所得三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系?
(2)将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2、B2、C2,依次连接A2、B2、C2各点,所得三角形A2B2C2与三角形ABC的大小、形状和位置上有什么关系?
解:如图(2),所得三角形A1B1C1与三角形ABC的大小、形状完全相同,三角形A1B1C1可以看作将三角形ABC向左平移6个单位长度得到.类似地,三角形A2B2C2与三角形ABC的大小、形状完全相同,它可以看作将三角形ABC向下平移5个单位长度得到.
思考:
(1)如果将这个问题中的“横坐标都减去6”“纵坐标都减去5”相应的变为“横坐标都加3”“纵坐标都加2”,分别能得出什么结论?画出得到的图形.
(2)如果将三角形ABC三个顶点的横坐标都减去6,同时纵坐标都减去5,能得到什么结论?画出得到的图形.
归纳上面的作图与分析,你能得到什么结论?
在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,得到的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,得到的新图形就是把原图形向上(或下)平移a个单位长度.
点(x+a,y)
图形向右平移a个单位长度
点(x-a,y)
图形向左平移a个单位长度
点(x,y+b)
图形向上平移a个单位长度度
点(x,y-b )
图形向下平移a个单位长度
四、课堂练习
五、课堂小结
对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.
图形的平移与图形上的点的坐标的变化有什么规律?
人教版七年级下册7.2.2用坐标表示平移教学设计: 这是一份人教版七年级下册<a href="/sx/tb_c102673_t8/?tag_id=27" target="_blank">7.2.2用坐标表示平移教学设计</a>,共3页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。
初中数学人教版七年级下册7.2.2用坐标表示平移教学设计: 这是一份初中数学人教版七年级下册7.2.2用坐标表示平移教学设计,共5页。
人教版七年级下册7.2.2用坐标表示平移教学设计: 这是一份人教版七年级下册7.2.2用坐标表示平移教学设计,共3页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。