第五章第三节本第四节节综合平行线的性质及平移(提高)巩固练习
展开【巩固练习】
一、选择题
1. 若∠1和∠2是同旁内角,若∠1=45°,则∠2的度数是 ( )
A.45° B.135° C.45°或135° D.不能确定
2.(2015•枣庄)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )
A.15° B. 20° C. 25° D. 30°
3.(湖北襄樊)如图所示,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=
150°,则∠C的度数为( )
A.150° B.130° C.120° D.100°
4.如图,OP∥QR∥ST,则下列等式中正确的是( )
A.∠1+∠2-∠3=90°
B.∠2+∠3-∠1=180°
C.∠1-∠2+∠3=180°
D.∠1+∠2+∠3=180°
5. 如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD,且交EF于点O,则与∠AOE相等的角有( )
A.5个 B.4个 C.3个 D.2个
6.(湖北潜江)如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于( )
A.23° B.16° C.20° D.26°
7. 如图所示,在一个由4×4个小正方形组成的正方形网格中,把线段EF向右平移3个单位,向下平移1个单位得到线段GH,则阴影部分面积与正方形ABCD的面积比是( )
A.3:4 B.5:8 C.9:16 D.1:2
8. 有下列语句中,真命题的个数是( )
①画直线AB垂直于CD;②若|x|=|y|,则x2=y2.
③两直线平行,同旁内角相等;④直线a、b相交于点O;⑤等角的余角相等.
A.2个 B.3个 C.4个 D.5个
二、填空题
9.(四川广安)如图所示,直线∥.直线与直线,分别相交于点、点,,垂足为点,若,则= _____,直线之间的距离_____.
10.如图所示,AB∥CD,若∠ABE=120°,∠DCE=35°,则有∠BEC=________.
11.(四川攀枝花)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3= .
12.(2015•泸州)如图,AB∥CD,CB平分∠ABD.若∠C=40°,则∠D的度数为_______.
13.如图所示,在长方形ABCD中,AB=10cm,BC=6cm,将长方形ABCD沿着AB方向平移________cm,才能使平移后的长方形HEFG与原来的长方形ABCD重叠部分的面积为24cm2.
14.如图,已知ED∥AC,DF∥AB,有以下命题:
①∠A=∠EDF;②∠1+∠2=180°;③∠A+∠B+∠C=180°;④∠1=∠3.其中,正确的是________.(填序号)
三、解答题
15.(2015•建湖县一模)如图,AB∥CD,EF分别交AB、CD与M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠MGC的度数.
16.已知 如图(1),CE∥AB,所以∠1=∠A,∠2=∠B,∴ ∠ACD=∠1+∠2=∠A+∠B.这是一个有用的事实,请用这个结论,在图(2)的四边形ABCD内引一条和边平行的直线,求∠A+∠B+∠C+∠D的度数.
17.对于同一平面内的三条直线a、b、c,给出下列五个论断:①a∥b;②b∥c;③a⊥b;④a∥c;⑤a⊥c.以其中两个论断为条件,一个论断为结论,组成真命题,试写出所有的真命题.
【答案与解析】
一、选择题
1. 【答案】D;
【解析】本题没有给出两条直线平行的条件,因此同旁内角的数量关系是不确定的.
2.【答案】C.
【解析】∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.
3. 【答案】C;
【解析】解:如图,
∠3=30°,∠1=∠2=30°,∠C=180°-30°-30°=120°.
4. 【答案】B;
【解析】反向延长射线ST交PR于点M,则在△MSR中,
180°-∠2+180°-∠3+∠1=180°,即有∠2+∠3-∠1=180°.
5. 【答案】A
【解析】与∠AOE相等的角有:∠DCA,∠ACB,∠COF,∠CAB,∠DAC.
6. 【答案】C;
【解析】解:∵AB∥EF∥CD,∠ABC=46°,∠CEF=154°,
∴∠BCD=∠ABC=46°,∠FEC+∠ECD=180°,
∴∠ECD=180°—∠FEC=26°,
∴∠BCE=∠BCD—∠ECD=46°—26°=20°.
7. 【答案】B;
【解析】,,所以.
8. 【答案】A;
【解析】②⑤为真命题.
二.填空题
9. 【答案】32°,线段AM的长;
【解析】因为,所以∠ABM=∠1=58°.又因为AM⊥,所以∠2+∠ABM=90°,所以∠2=90°-58°=32°.
10.【答案】95°;
【解析】如图,过点E作EF∥AB.所以∠ABE+∠FEB=180°(两直线平行,同旁内角互补),所以∠FEB=180°-120°=60°.又因为AB∥CD,EF∥AB,所以EF∥CD,所以∠FEC=∠DCE=35°(两直线平行,内错角相等),所以∠BEC=∠FEB+∠FEC=60°+35°=95°.
11.【答案】60°;
【解析】解:如图所示:∵l1∥l2,∠2=65°,∴∠6=65°,∵∠1=55°,∴∠1=∠4=55°,在△ABC中,∠6=65°,∠4=55°,∴∠3=180°﹣65°﹣55°=60°.
12.【答案】100°
【解析】∵AB∥CD,∠C=40°,∴∠ABC=40°,∵CB平分∠ABD,∴∠ABD=80°,∴∠D=100°.
13.【答案】6;
【解析】重叠部分长方形的一边长为6cm,另一边长为:24÷6=4 cm,所以平移的距离为:AE=10-4=6 cm.
14.【答案】①②③④;
【解析】由已知可证出:∠A=∠1=∠3=∠EDF,又∠EDF与∠1和∠3互补.
三.解答题
15.【解析】
解:∵∠EMB=50°,
∴∠BMF=180°﹣50°=130°.
∵MG平分∠BMF,
∴∠BMG=∠BMF=65°.
∵AB∥CD,
∴∠MGC=∠BMG=65°.
16.【解析】
解:如图,过点D作DE∥AB交BC于点E.
∴ ∠A+∠2=180°,∠B+∠3=180°(两直线平行,同旁内角互补).
又∵ ∠3=∠1+∠C,
∴ ∠A+∠B+∠C+∠1+∠2=360°,
即∠A+∠B+∠C+∠ADC=360°.
17.【解析】
解:(1)如果a∥b,b∥c,那么a∥c;(2)如果a∥b,a∥c,那么b∥c;
(3)如果b∥c,a∥c,那么a∥b;(4)如果b∥c,a⊥b,那么a⊥c;
(5)如果b∥c,a⊥c,那么a⊥b;(6)如果a⊥b,a⊥c,那么b∥c.