高中数学苏教版必修43.2 二倍角的三角函数导学案
展开第八课时 二倍角的正弦、余弦、正切(二)
教学目标:
掌握和角、差角、倍角公式的一些应用,解决一些实际问题;培养学生理论联系实际的观点和对数学的应用意识.
教学重点:
和角、差角、倍角公式的灵活应用.
教学难点:
如何灵活应用和、差、倍角公式进行三角式化简、求值、证明恒等式.
教学过程:
Ⅰ.复习回顾
回顾上节课所推导的二倍角的正弦、余弦、正切公式.
Ⅱ.讲授新课
现在我们继续探讨和角、差角、倍角公式的一些应用.
[例1]求证=.
分析:运用比例的基本性质,可以发现原式等价于=,此式右边就是tan2θ.
证明:原式等价于=tan2θ
而上式左边==
==tan2θ=右边
∴上式成立. 即原式得证.
[例2]利用三角公式化简sin50°(1+tan10°)
解:原式=sin50°(1+)
=sin50°·
=2sin50°·
=2cos40°· ===1
或:原式=sin50°(1+tan60°tan10°)
=sin50°(1+)
=sin50°·
=sin50°· =
===1
评述:在三角函数式的求值、化简与恒等变形中,有两种典型形式应特别注意,它们在解决上述几类问题中,起着重要作用,这两种典型形式是:
sinx+cosx=sin(x+);sinx+cosx=2sin(x+);
cosx+sinx=2sin(x+)
Ⅲ.课堂练习
课本P110 1、2、3.
练习题:
1.若-2π<α<-,则的值是 ( )
A.sin B.cos C.-sin D.-cos
解:===
∵-2π<α<-,∴-π<<-,∴cos<0
∴原式=-cos
2.已知tan=,求的值.
解:=
==tan=
∴的值为.
3.证明-sin2θ=4cos2θ
证法一:左边=-2sinθcosθ
=-2sinθcosθ
=
=
==4cos2θ=右边
证法二:∵(4cos2θ+sin2θ)(2tanθ-1)
=8sinθcosθ-4cos2θ+4sin2θ-2sinθcosθ
=6sinθcosθ-4cos2θ+4sin2θ
又∵3sin2θ-4cos2θ=6sinθcosθ-4cos2θ+4sin2θ
∴(4cos2θ+sin2θ)(2tanθ-1)=3sin2θ-4cos2θ
∴=4cos2θ+sin2θ
即:-sin2θ=4cos2θ
Ⅳ.课时小结
进一步熟练掌握和角、差角、倍角公式的灵活应用,注意要正确使用公式进行三角式的化简、求值、证明.
Ⅴ.课后作业
课本P110习题 5、6
高中人教版新课标A2.4 平面向量的数量积学案设计: 这是一份高中人教版新课标A2.4 平面向量的数量积学案设计
高中数学人教版新课标A必修43.1 两角和与差的正弦、余弦和正切公式学案设计: 这是一份高中数学人教版新课标A必修43.1 两角和与差的正弦、余弦和正切公式学案设计
2021学年2.5 向量的应用学案: 这是一份2021学年2.5 向量的应用学案,共5页。学案主要包含了基础题,提高题,能力题等内容,欢迎下载使用。