年终活动
搜索
    上传资料 赚现金

    高端精品高中数学一轮专题-椭圆(讲)(带答案)教案

    立即下载
    加入资料篮
    高端精品高中数学一轮专题-椭圆(讲)(带答案)教案第1页
    高端精品高中数学一轮专题-椭圆(讲)(带答案)教案第2页
    高端精品高中数学一轮专题-椭圆(讲)(带答案)教案第3页
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高端精品高中数学一轮专题-椭圆(讲)(带答案)教案

    展开

    这是一份高端精品高中数学一轮专题-椭圆(讲)(带答案)教案,共13页。
    1.结合椭圆的定义,考查应用能力,凸显逻辑推理、数学运算的核心素养.
    2.结合椭圆的定义、简单的几何性质、几何图形,会求椭圆方程及解与几何性质有关的问题,凸显数学运算、直观想象的核心素养.
    [理清主干知识]
    1.椭圆的定义
    平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.
    集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数.
    (1)若a>c,则集合P为椭圆.
    (2)若a=c,则集合P为线段.
    (3)若a1)的左、右焦点分别为F1,F2,P为椭圆上异于端点的任意一点,PF1,PF2的中点分别为M,N,O为坐标原点,四边形OMPN的周长为2eq \r(3),则△PF1F2的周长是( )
    A.2(eq \r(2)+eq \r(3)) B.4+2eq \r(3)
    C.eq \r(2)+eq \r(3) D.eq \r(2)+2eq \r(3)
    [解析] 如图,由于O,M,N分别为F1F2,PF1,PF2的中点,
    所以OM∥PF2,ON∥PF1,且
    |OM|=eq \f(1,2)|PF2|,|ON|=eq \f(1,2)|PF1|,
    所以四边形OMPN为平行四边形,
    所以▱OMPN的周长为
    2(|OM|+|ON|)=|PF1|+|PF2|=2a=2eq \r(3),
    所以a=eq \r(3),又知a2=b2+c2,b2=1,
    所以c2=a2-1=2,所以|F1F2|=2c=2eq \r(2),
    所以△PF1F2的周长为2a+2c=2eq \r(3)+2eq \r(2)=2(eq \r(2)+eq \r(3)),故选A.
    [答案] A
    考法(三) 利用定义求最值
    [例3] 设点P是椭圆C:eq \f(x2,8)+eq \f(y2,4)=1上的动点,F为椭圆C的右焦点,定点A(2,1),则|PA|+|PF|的取值范围是______________.
    [解析] 如图所示,设F′是椭圆的左焦点,连接AF′,PF′,则F′(-2,0),
    ∴|AF′|=eq \r(42+12)=eq \r(17).
    ∵|PF|+|PF′|=2a=4eq \r(2),
    ∴|PA|+|PF|=|PA|+2a-|PF′|≤2a+|AF′|=4eq \r(2)+eq \r(17),
    |PA|+|PF|=|PA|+2a-|PF′|
    =2a-(|PF′|-|PA|)≥2a-|AF′|=4eq \r(2)-eq \r(17).
    ∴|PA|+|PF|的取值范围是[4eq \r(2)-eq \r(17),4eq \r(2)+eq \r(17) ].
    [答案] [4eq \r(2)-eq \r(17),4eq \r(2)+eq \r(17) ]
    [方法技巧] 椭圆定义应用的类型及方法
    [针对训练]
    1.(多选)已知P是椭圆eq \f(x2,9)+eq \f(y2,4)=1上一点,椭圆的左、右焦点分别为F1,F2,且cs∠F1PF2=eq \f(1,3),则( )
    A.△PF1F2的周长为12 B.S△PF1F2=2eq \r(2)
    C.点P到x轴的距离为eq \f(2\r(10),5) D.eq \(PF1,\s\up7(―→))·eq \(PF2,\s\up7(―→))=2
    解析:选BCD 由椭圆方程知a=3,b=2,所以c=eq \r(5),所以|PF1|+|PF2|=6,于是△PF1F2的周长为2a+2c=6+2eq \r(5),故A选项错误;
    在△PF1F2中,由余弦定理可得|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cs∠F1PF2=(|PF1|+|PF2|)2-2|PF1||PF2|-2|PF1|·|PF2|cs∠F1PF2,
    所以20=36-2|PF1|·|PF2|-eq \f(2,3)|PF1||PF2|,解得|PF1||PF2|=6,
    故S△PF1F2=eq \f(1,2)|PF1||PF2|sin∠F1PF2=eq \f(1,2)×6×eq \f(2\r(2),3)=2eq \r(2),故B选项正确;
    设点P到x轴的距离为d,则S△PF1F2=eq \f(1,2)|F1F2|·d=eq \f(1,2)×2eq \r(5)d=2eq \r(2),解得d=eq \f(2\r(10),5),故C选项正确;
    eq \(PF1,\s\up7(―→))·eq \(PF2,\s\up7(―→))=|eq \(PF1,\s\up7(―→))|·|eq \(PF2,\s\up7(―→))|cs∠F1PF2=6×eq \f(1,3)=2,故D选项正确.
    2.已知椭圆eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的短轴长为2,上顶点为A,左顶点为B,左、右焦点分别是F1,F2,且△F1AB的面积为eq \f(2-\r(3),2),点P为椭圆上的任意一点,则eq \f(1,|PF1|)+eq \f(1,|PF2|)的取值范围是________.
    解析:由已知得2b=2,故b=1,
    ∴a2-c2=b2=1. ①
    ∵△F1AB的面积为eq \f(2-\r(3),2),∴eq \f(1,2)(a-c)b=eq \f(2-\r(3),2),
    ∴a-c=2-eq \r(3). ②
    由①②联立解得,a=2,c=eq \r(3).
    由椭圆的定义知|PF1|+|PF2|=2a=4,
    ∴eq \f(1,|PF1|)+eq \f(1,|PF2|)=eq \f(|PF1|+|PF2|,|PF1||PF2|)=eq \f(4,|PF1|4-|PF1|)=eq \f(4,-|PF1|2+4|PF1|),
    又2-eq \r(3)≤|PF1|≤2+eq \r(3),
    ∴1≤-|PF1|2+4|PF1|≤4,∴1≤eq \f(1,|PF1|)+eq \f(1,|PF2|)≤4,
    即eq \f(1,|PF1|)+eq \f(1,|PF2|)的取值范围是[1,4].
    答案:[1,4]
    考点二 椭圆的标准方程
    [例1] 过点(eq \r(3),-eq \r(5)),且与椭圆eq \f(y2,25)+eq \f(x2,9)=1有相同焦点的椭圆的标准方程为( )
    A.eq \f(x2,20)+eq \f(y2,4)=1 B.eq \f(x2,2\r(5))+eq \f(y2,4)=1
    C.eq \f(y2,20)+eq \f(x2,4)=1 D.eq \f(x2,4)+eq \f(y2,2\r(5))=1
    [解析] 法一:定义法
    椭圆eq \f(y2,25)+eq \f(x2,9)=1的焦点为(0,-4),(0,4),即c=4.
    由椭圆的定义知,2a=eq \r(\r(3)-02+-\r(5)+42)+eq \r(\r(3)-02+-\r(5)-42),
    解得a=2eq \r(5).
    由c2=a2-b2,可得b2=4.
    所以所求椭圆的标准方程为eq \f(y2,20)+eq \f(x2,4)=1.故选C.
    法二:待定系数法
    设所求椭圆方程为eq \f(y2,25+k)+eq \f(x2,9+k)=1(k>-9),将点(eq \r(3),-eq \r(5))的坐标代入,可得eq \f(-\r(5)2,25+k)+eq \f(\r(3)2,9+k)=1,
    解得k=-5,
    所以所求椭圆的标准方程为eq \f(y2,20)+eq \f(x2,4)=1.故选C.
    [答案] C
    [例2] 如图,已知椭圆C的中心为原点O,F(-5,0)为C的左焦点,P为C上一点,满足|OP|=|OF|且|PF|=6,则椭圆C的标准方程为( )
    A.eq \f(x2,36)+eq \f(y2,16)=1 B.eq \f(x2,40)+eq \f(y2,15)=1
    C.eq \f(x2,49)+eq \f(y2,24)=1 D.eq \f(x2,45)+eq \f(y2,20)=1
    [解析] 由题意可得c=5,设右焦点为F′,
    连接PF′(图略),由|OP|=|OF|=|OF′|知,
    ∠PFF′=∠FPO,∠OF′P=∠OPF′,
    ∴∠PFF′+∠OF′P=∠FPO+∠OPF′,
    ∴∠FPO+∠OPF′=90°,即PF⊥PF′.
    在Rt△PFF′中,由勾股定理,
    得|PF′|=eq \r(|FF′|2-|PF|2)=eq \r(102-62)=8,
    由椭圆的定义,得|PF|+|PF′|=2a=6+8=14,
    从而a=7,a2=49,
    于是b2=a2-c2=49-25=24,
    ∴椭圆C的方程为eq \f(x2,49)+eq \f(y2,24)=1,故选C.
    [答案] C
    [方法技巧] 求椭圆标准方程的2种常用方法
    [针对训练]
    1.若直线x-2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为( )
    A.eq \f(x2,5)+y2=1 B.eq \f(x2,4)+y2=1
    C.eq \f(x2,5)+y2=1或eq \f(x2,4)+eq \f(y2,5)=1 D.以上答案都不正确
    解析:选C 直线与坐标轴的交点为(0,1),(-2,0),由题意知当焦点在x轴上时,c=2,b=1,所以a2=5,所求椭圆的标准方程为eq \f(x2,5)+y2=1;当焦点在y轴上时,b=2,c=1,所以a2=5,所求椭圆的标准方程为eq \f(y2,5)+eq \f(x2,4)=1.
    2.一个椭圆的中心在原点,焦点F1,F2在x轴上,P(2,eq \r(3))是椭圆上一点,且|PF1|,|F1F2|,|PF2|成等差数列,则椭圆的方程为( )
    A.eq \f(x2,8)+eq \f(y2,6)=1 B.eq \f(x2,16)+eq \f(y2,6)=1
    C.eq \f(x2,8)+eq \f(y2,4)=1 D.eq \f(x2,16)+eq \f(y2,4)=1
    解析:选A 设椭圆的标准方程为eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0).由点P(2,eq \r(3))在椭圆上知eq \f(4,a2)+eq \f(3,b2)=1.又|PF1|,|F1F2|,|PF2|成等差数列,则|PF1|+|PF2|=2|F1F2|,即2a=2·2c,eq \f(c,a)=eq \f(1,2),又c2=a2-b2,联立得a2=8,b2=6.所以椭圆方程为eq \f(x2,8)+eq \f(y2,6)=1.
    考点三 椭圆的几何性质
    考法(一) 求椭圆的离心率
    [例1] (1)已知椭圆方程为eq \f(x2,a)+eq \f(y2,b)=1,且a,b,a+b成等差数列,a,b,ab成等比数列,则此椭圆的离心率为( )
    A.eq \f(1,2) B.eq \f(\r(3),3)
    C.eq \f(\r(2),2) D.eq \f(\r(3),2)
    (2)过椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1eq \b\lc\(\rc\)(\a\vs4\al\c1(a>b>0))的左焦点F的直线过C的上端点B,且与椭圆相交于点A,若eq \(BF,\s\up7(―→))=3eq \(FA,\s\up7(―→)),则C的离心率为( )
    A.eq \f(1,3) B.eq \f(\r(3),3)
    C.eq \f(\r(3),2) D.eq \f(\r(2),2)
    [解析] (1)因为a,b,a+b成等差数列,所以2b=a+a+b,即b=2a,又因为a,b,ab成等比数列,b≠0,a≠0,所以b2=a·ab,即b=a2,所以a=2,b=4,椭圆方程为eq \f(x2,2)+eq \f(y2,4)=1,c=eq \r(4-2)=eq \r(2),所以离心率e=eq \f(\r(2),2).故选C.
    (2)由题意可得B(0,b),F(-c,0),
    由eq \(BF,\s\up7(―→))=3eq \(FA,\s\up7(―→)),得Aeq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(4,3)c,-\f(b,3))),
    又点A在椭圆上,则eq \f(\b\lc\(\rc\)(\a\vs4\al\c1(-\f(4,3)c))2,a2)+eq \f(\b\lc\(\rc\)(\a\vs4\al\c1(-\f(b,3)))2,b2)=1,
    整理可得eq \f(16,9)·eq \f(c2,a2)=eq \f(8,9),
    ∴e2=eq \f(c2,a2)=eq \f(1,2),e=eq \f(\r(2),2).故选D.
    [答案] (1)C (2)D
    [方法技巧]
    求椭圆离心率的3种方法
    (1)直接求出a,c来求解e.通过已知条件列方程组,解出a,c的值.
    (2)构造a,c的齐次式,解出e.由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解.
    (3)通过取特殊值或特殊位置,求出离心率.
    [提醒] 在解关于离心率e的二次方程时,要注意利用椭圆的离心率e∈(0,1)进行根的取舍,否则将产生增根.
    考法(二) 求椭圆的离心率的范围
    [例2] (1)已知椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1 (a>b>0),直线y=x与椭圆相交于A,B两点,若椭圆上存在异于A,B两点的点P使得kPA·kPB∈eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,3),0)),则离心率e的取值范围为( )
    A.eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(\r(6),3))) B.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(6),3),1))
    C.eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(2,3))) D.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2,3),1))
    (2)已知椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的右焦点为F,短轴的一个端点为P,直线l:4x-3y=0与椭圆C相交于A,B两点.若eq \b\lc\|\rc\|(\a\vs4\al\c1(AF))+eq \b\lc\|\rc\|(\a\vs4\al\c1(BF))=6,点P到直线l的距离不小于eq \f(6,5),则椭圆离心率的取值范围是( )
    A.eq \b\lc\(\rc\](\a\vs4\al\c1(0,\f(5,9))) B.eq \b\lc\(\rc\](\a\vs4\al\c1(0,\f(\r(3),2)))
    C.eq \b\lc\(\rc\](\a\vs4\al\c1(0,\f(\r(5),3))) D.eq \b\lc\(\rc\](\a\vs4\al\c1(\f(1,3),\f(\r(3),2)))
    [解析] (1)设P(x0,y0),直线y=x过原点,由椭圆的对称性设A(x1,y1),B(-x1,-y1),
    kPAkPB=eq \f(y0-y1,x0-x1)×eq \f(y0+y1,x0+x1)=eq \f(y\\al(2,0)-y\\al(2,1),x\\al(2,0)-x\\al(2,1)).
    又eq \f(x\\al(2,0),a2)+eq \f(y\\al(2,0),b2)=1,eq \f(x\\al(2,1),a2)+eq \f(y\\al(2,1),b2)=1,两式做差,代入上式得kPAkPB=-eq \f(b2,a2)∈eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,3),0)),故0b>0)的左、右焦点,若椭圆C上存在点P使∠F1PF2为钝角,则椭圆C的离心率的取值范围是( )
    A.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(2),2),1)) B.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),1))
    C.eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(\r(2),2))) D.eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(1,2)))
    解析:选A 设P(x0,y0),由题易知|x0|(xeq \\al(2,0)+yeq \\al(2,0))min,又yeq \\al(2,0)=b2-eq \f(b2,a2)xeq \\al(2,0),xeq \\al(2,0)b2,又b2=a2-c2,所以e2=eq \f(c2,a2)>eq \f(1,2),解得e>eq \f(\r(2),2),又00,m≠n),A(x1,y1),B(x2,y2)是椭圆上的两点,
    把点A(x1,y1),B(x2,y2)代入椭圆方程,
    得eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(x\\al(2,1),m)+\f(y\\al(2,1),n)=1,,\f(x\\al(2,2),m)+\f(y\\al(2,2),n)=1,))将两式作差并整理得
    eq \f(x1-x2x1+x2,m)+eq \f(y1-y2y1+y2,n)=0,
    记弦AB的中点为M(x0,y0),
    若x1≠x2,则eq \f(y1-y2y1+y2,x1-x2x1+x2)=-eq \f(n,m),
    即eq \f(y1-y2,x1-x2)·eq \f(y0,x0)=-eq \f(n,m),
    从而kAB·eq \f(y0,x0)=-eq \f(n,m),即kAB·kOM=-eq \f(n,m).
    [应用体验]
    1.已知椭圆E:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的右焦点F(3,0),过点F的直线交E于A,B两点,若AB的中点坐标为(1,-1),则E的方程为( )
    A.eq \f(x2,45)+eq \f(y2,36)=1 B.eq \f(x2,36)+eq \f(y2,27)=1
    C.eq \f(x2,27)+eq \f(y2,18)=1 D.eq \f(x2,18)+eq \f(y2,9)=1
    解析:选D 设AB的中点为M(1,-1),
    则kAB·kOM=-eq \f(b2,a2),
    而kAB=kMF=eq \f(0--1,3-1)=eq \f(1,2),kOM=-1,
    故eq \f(1,2)×(-1)=-eq \f(b2,a2),故a2=2b2,①
    又a2=b2+9,②
    由①②解得a2=18,b2=9,
    故椭圆E的方程为eq \f(x2,18)+eq \f(y2,9)=1.
    2.如果AB是椭圆eq \f(x2,a2)+eq \f(y2,b2)=1的任意一条与x轴不垂直的弦,O为椭圆的中心,e为椭圆的离心率,M为AB的中点,则kAB·kOM的值为( )
    A.e-1 B.1-e
    C.e2-1 D.1-e2
    解析:选C 易知kAB·kOM=-eq \f(b2,a2)=eq \f(c2,a2)-1=e2-1.
    二、创新考查方式——领悟高考新动向
    1.阿基米德(公元前287年—公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的对称轴为坐标轴,焦点在y轴上,且椭圆C的离心率为eq \f(\r(7),4),面积为12π,则椭圆C的方程为( )
    A.eq \f(x2,9)+eq \f(y2,16)=1 B.eq \f(x2,3)+eq \f(y2,4)=1
    C.eq \f(x2,18)+eq \f(y2,32)=1 D.eq \f(x2,4)+eq \f(y2,36)=1
    解析:选A 由题意可得eq \b\lc\{\rc\ (\a\vs4\al\c1(abπ=12π,,\f(c,a)=\f(\r(7),4),,a2=b2+c2,))解得a=4,b=3,
    因为椭圆的焦点坐标在y轴上,
    所以椭圆方程为eq \f(x2,9)+eq \f(y2,16)=1.
    2.“嫦娥四号”探测器于2019年1月在月球背面成功着陆.如图所示,假设“嫦娥四号”卫星沿地月转移轨道飞向月球后,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道Ⅱ绕月飞行,若用e1和e2分别表示椭圆轨道Ⅰ和Ⅱ的离心率,则( )
    A.e1>e2
    B.e1a2>0,c1>c2>0,且a1-c1=a2-c2.
    令a1-c1=a2-c2=t,t>0,则a1=t+c1,a2=t+c2.
    所以eq \f(1,e1)=eq \f(a1,c1)=eq \f(c1+t,c1)=1+eq \f(t,c1),
    eq \f(1,e2)=eq \f(a2,c2)=eq \f(c2+t,c2)=1+eq \f(t,c2).
    因为c1>c2>0,t>0,所以eq \f(t,c1)

    相关教案

    高端精品高中数学一轮专题-复数的乘、除运算(讲)(带答案)教案:

    这是一份高端精品高中数学一轮专题-复数的乘、除运算(讲)(带答案)教案,共4页。教案主要包含了自主学习,合作探究等内容,欢迎下载使用。

    高端精品高中数学一轮专题-双曲线(讲)(带答案)教案:

    这是一份高端精品高中数学一轮专题-双曲线(讲)(带答案)教案,共15页。

    高端精品高中数学一轮专题-椭圆(讲)教案:

    这是一份高端精品高中数学一轮专题-椭圆(讲)教案,共9页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map