终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    高端精品高中数学一轮专题-直线、平面平行的判定及性质(讲)(带答案)教案

    立即下载
    加入资料篮
    高端精品高中数学一轮专题-直线、平面平行的判定及性质(讲)(带答案)教案第1页
    高端精品高中数学一轮专题-直线、平面平行的判定及性质(讲)(带答案)教案第2页
    高端精品高中数学一轮专题-直线、平面平行的判定及性质(讲)(带答案)教案第3页
    还剩11页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高端精品高中数学一轮专题-直线、平面平行的判定及性质(讲)(带答案)教案

    展开

    这是一份高端精品高中数学一轮专题-直线、平面平行的判定及性质(讲)(带答案)教案,共14页。教案主要包含了知识清单,考点分类剖析,规律方法,变式探究,特别提醒,总结提升,易错提醒等内容,欢迎下载使用。
    直线、平面平行的判定及性质新课程考试要求1.了解平面的含义,理解空间点、直线、平面位置关系的定义,掌握公理、判定定理和性质定理;2. 掌握公理、判定定理和性质定理.核心素养本节涉及的数学核心素养:数学运算、逻辑推理、直观想象.向预测1)以几何体为载体,考查线线、线面、面面平行证明.2)利用平行关系及平行的性质进行适当的转化,处理综合问题.3空间中的平行关系在高考命题中,主要与平面问题中的平行、简单几何体的结构特征等问题相结合,综合直线和平面,以及简单几何体的内容于一体,经常是以简单几何体作为载体,以解答题形式呈现是主要命题方式, 通过对图形或几何体的认识,考查线面平行、面面平行的判定与性质,考查转化思想、空间想象能力、逻辑思维能力及运算能力.【知识清单】知识点1.直线与平面平行的判定与性质1.直线和平面平行的判定(1)定义:直线和平面没有公共点,则称直线平行于平面;(2)判定定理:aαbα,且abaα(3)其他判定方法:αβaαaβ.2.直线和平面平行的性质定理:aαaβαβlal. 判定性质定义定理图形条件aαaαbαabaαaαaβαβb结论aαbαaαab知识点2.面面平行的判定与性质1.平面与平面的位置关系有相交、平行两种情况.2.两个平面平行的判定(1)定义:两个平面没有公共点,称这两个平面平行;(2)判定定理:aαbαabMaβbβαβ(3)推论:abMabαa′∩b′=M′,a′,bβaa′,bbαβ.3.两个平面平行的性质定理(1)αβaαaβ(2)αβγαaγβbab. 判定性质定义定理图形条件αβaβbβabPaαbααβαγaβγbαβaβ结论αβαβabaα知识点3与垂直相关的平行的判定(1)aαbαab(2)aαaβαβ.考点分类剖析考点 直线与平面平行的判定与性质【典例1 直线与平面无公共点直线在平面________条件(.充分不必要必要不充分充要既不充分也不必要中选一个合适的填空)【答案】充分不必要【解析】因为直线与平面无公共点,则直线在平面外,所以充分性成立,又因直线在平面外,则直线与平面相交或平行,即直线与平面有一个公共点或无公共点,所以必要性不成立,所以直线与平面无公共点直线在平面的充分不必要条件.故答案为:充分不必要.【典例2如图,已知四棱锥,底面四边形为菱形,分别是线段的中点.1)求证:平面2)求异面直线所成角的大小.【答案】(1)见解析;(2【解析】1)解:连接于点分别是线段的中点,平面平面平面2)解:由(1)知,就是异面直线所成的角或其补角.四边形为菱形,中,异面直线所成的角为【规律方法】判断或证明线面平行的常用方法:利用线面平行的判定定理(aαbαabaα),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(αβaαaβ)利用面面平行的性质(αβaβaαaβ) 【变式探究】1已知正方体的棱长为2,点分别是棱的中点,点在四边形(包括边界)运动,则下列说法正确的是(    A.截面的面积是B.点和点到平面的距离不相等C.若平面,则点的轨迹的长度是D.若平面,则点的轨迹的长度是【答案】ACD【解析】中点为,易得,即截面为等腰梯形截面的面积是,故A正确;连接,与交于点,则点为的中点,而平面过线段的中点,和点到平面的距离相等,故B错误;的中点为,取的中点为,连接易得平面平面,即点的轨迹为,且,故C正确;同样易知平面平面,即点的轨迹为,且,故D正确;故选:ACD2已知空间几何体中,均为边长为的等边三角形,为腰长为的等腰三角形,平面平面平面平面.(1) 试在平面内作一条直线,使直线上任意一点的连线均与平面平行,并给出详细证明.2)求点到平面的距离.【答案】(1)见解析;(2【解析】如图所示:BCBD的中点HG,连接HGHG为所求直线,证明如下:因为BCBD的中点HG,所以,平面平面,且平面BCD平面平面. ,所以 ,即所以,所以直线HG上任意一点的连线均与平面平行. 由(1)可得,即平面ABC所以点E到平面ABC的距离和点O到平面ABC的距离相等,记为三角形ABC的面积 而三角形ACE的面积 用等体积法可得: 特别提醒解决有关线面平行的基本问题的注意事项:(1)易忽视判定定理与性质定理的条件,如易忽视线面平行的判定定理中直线在平面外这一条件;(2)结合题意构造或绘制图形,结合图形作出判断;(3)可举反例否定结论或用反证法判断结论是否正确.考点  平面与平面平行的判定与性质【典例3如图所示,在三棱柱中,EFGH分别是ABAC的中点. 1)求证:平面ABC2)求证:平面平面BCHG.【解析】1)在三棱柱中,因为分别是的中点, 所以又因为,所以.因为平面平面所以2)因为分别是的中点,所以.又因为在三棱柱中,的中点,所以,即四边形为平行四边形.所以.因为平面平面,所以平面因为平面平面,所以平面又因为平面,且所以平面平面.【典例4如图,在三棱柱中,底面是正三角形,平面,已知侧棱长为的中点,分别是的中点.1)求所成角的大小;2)求证:平面平面【答案】(1 2)证明见解析.【解析】1)连接,因为分别是的中点,所以所以异面直线所成角即为直线所成的角,在直角中,由,可得,所以.2)由(1)知平面平面ABB1A1,所以平面因为的中点,所以因为平面,且平面,所以平面又因为,且平面所以平面平面.【规律方法】判定面面平行的常用方法:(1)面面平行的定义,即判断两个平面没有公共点;(2)面面平行的判定定理;(3)垂直于同一条直线的两平面平行;(4)平面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行.【变式探究】1.已知直线lm,平面,下列命题正确的是(    ABCD【答案】D【解析】由题意得,对于A中,可能相交,所以A是错误的;对于B中,,如果可能相交,故是错误的;对于C中,可能相交,所以C错误的;对于D中,满足面面平行的判定定理,所以,故D正确的,故选:D.2.如图,在三棱柱中,EFG分别为AB的中点.求证:平面平面BEF若平面,求证:HBC的中点.【解析】如图,F分别为的中点,平面平面平面FG分别为AB的中点,四边形为平行四边形,则平面平面平面平面平面BEF平面平面平面平面平面与平面ABC有公共点G,则有经过G的直线,设交,得AB的中点,BC的中点.总结提升】证明两个平面平行的方法有:①用定义法来完成证明;②用判定定理或推论(即“线线平行面面平行”),通过线面平行来完成证明;③根据“垂直于同一条直线的两个平面平行”这一性质进行证明;④借助“传递性”来完成.面面平行问题常转化为线面平行,而线面平行又可转化为线线平行,需要注意转化思想的应用.考点  线面、面面平行的综合应用【典例5如图,在正方体中,分别是的中点,则下列说法:平面平面其中正确的命题序号是________.【答案】①②③④【解析】在正方体中,分别是的中点,如图,中点为,连接则有四边形为平行四边形,同理四边形为平行四边形,,平面平面平面故命题正确;如图,连接则有平面平面故命题正确;如图,连接则有四边形是平行四边形,故命题正确;如图,设中点为连接四边形为平行四边形,同理四边形为平行四边形,平面平面平面平面命题正确.故答案为:①②③④.【典例6如图,在正方体中,的中点,分别是的中点.求证:1)直线平面2平面平面.【解析】1)如图,连接分别是的中点,.平面平面所以直线平面.2)连接分别是的中点,.平面,平面平面.平面平面平面平面. 【规律方法】1.证明线面平行的常用方法与思路(1)证明直线与平面平行的关键是设法在平面内找到一条与已知直线平行的直线,解题的思路是利用几何体的特征,合理利用中位线定理、线面平行的性质,或者构造平行四边形、寻找比例式证明两直线平行.(2)应用线面平行性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.2.判定面面平行的四种方法(1)利用定义:即证两个平面没有公共点(不常用)(2)利用面面平行的判定定理(主要方法)(3)利用垂直于同一条直线的两平面平行(4)利用平面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行3.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.4.解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,其转化关系为在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.【变式探究】1.已知是两条不同的直线,是三个不同的平面,(    A.若,则B.若,则C.若,则D.若,则【答案】C【解析】对于A中,若,则,所以A不正确;对于B中,若,则可能为相交平面,所以B不正确;对于C中,假设在平面内任取一定,分别作因为,根据面面垂直的性质定理,可得,又由,所以,且,所以,所以C正确.对于D中,若,只有当相交时,才能得到,所以D不正确.故选:C.2.【多选题】表示不同直线,表示不同平面,以下推理不正确的是(    A.若,则B.若,则C.若,则D.若,则【答案】ABC【解析】对于A,若,则,故A不正确;对于B,若,则异面,故B不正确;对于C,若,则相交,故C不正确;对于D,若,则.,又因为,则;若,则.D正确.故选:ABC【易错提醒】1.在推证线面平行时,一定要强调直线不在平面内,否则会出现错误.2.线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.3.解题中注意符号语言的规范应用. 

    相关教案

    高端精品高中数学一轮专题-直线与直线方程(讲)(带答案)教案:

    这是一份高端精品高中数学一轮专题-直线与直线方程(讲)(带答案)教案,共21页。教案主要包含了知识清单,考点分类剖析,规律方法,变式探究,易错提醒,典例10,典例11,总结提升等内容,欢迎下载使用。

    高端精品高中数学一轮专题-直线与圆的位置关系(讲)(带答案)教案:

    这是一份高端精品高中数学一轮专题-直线与圆的位置关系(讲)(带答案)教案,共17页。教案主要包含了知识清单,考点分类剖析,规律方法,变式探究,方法点晴,总结提升,典例10,典例11等内容,欢迎下载使用。

    高端精品高中数学一轮专题-椭圆(讲)(带答案)教案:

    这是一份高端精品高中数学一轮专题-椭圆(讲)(带答案)教案,共13页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map