湘教版必修25.2二倍角的三角函数教案
展开正弦定理、余弦定理(4)
教学目的:
1进一步熟悉正、余弦定理内容;
2能够应用正、余弦定理进行边角关系的相互转化;
3能够利用正、余弦定理判断三角形的形状;
4能够利用正、余弦定理证明三角形中的三角恒等式
教学重点:利用正、余弦定理进行边角互换时的转化方向
教学难点: 三角函数公式变形与正、余弦定理的联系
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教学方法:启发引导式
1启发学生在证明三角形问题或者三角恒等式时,要注意正弦定理、余弦定理的适用题型与所证结论的联系,并注意特殊正、余弦关系的应用,比如互补角的正弦值相等,互补角的余弦值互为相反数等;
2引导学生总结三角恒等式的证明或者三角形形状的判断,重在发挥正、余弦定理的边角互换作用
教学过程:
一、复习引入:
正弦定理:
余弦定理:
,
二、讲解范例:
例1在任一△ABC中求证:
证:左边=
==0=右边
例2 在△ABC中,已知,,B=45 求A、C及c
解一:由正弦定理得:
∵B=45<90 即b<a ∴A=60或120
当A=60时C=75
当A=120时C=15
解二:设c=x由余弦定理
将已知条件代入,整理:
解之:
当时
从而A=60 ,C=75
当时同理可求得:A=120 ,C=15
例3 在△ABC中,BC=a, AC=b, a, b是方程的两个根,且
2cos(A+B)=1
求(1)角C的度数 (2)AB的长度 (3)△ABC的面积
解:(1)cosC=cos[(A+B)]=cos(A+B)= ∴C=120
(2)由题设:
∴AB2=AC2+BC22AC•BC•osC
即AB=
(3)S△ABC=
例4 如图,在四边形ABCD中,已知ADCD, AD=10, AB=14, BDA=60, BCD=135 求BC的长
解:在△ABD中,设BD=x
则
即
整理得:
解之: (舍去)
由余弦定理:
∴
例5 △ABC中,若已知三边为连续正整数,最大角为钝角,1求最大角 ;
2求以此最大角为内角,夹此角两边之和为4的平行四边形的最大面积
解:1设三边 且
∵C为钝角 ∴解得
∵ ∴或3 但时不能构成三角形应舍去
当时
2设夹C角的两边为
S
当时S最大=
例6 在△ABC中,AB=5,AC=3,D为BC中点,且AD=4,求BC边长
分析:此题所给题设条件只有边长,应考虑在假设BC为x后,建立关于x的方程而正弦定理涉及到两个角,故不可用此时应注意余弦定理在建立方程时所发挥的作用因为D为BC中点,所以BD、DC可表示为,然用利用互补角的余弦互为相反数这一性质建立方程
解:设BC边为x,则由D为BC中点,可得BD=DC=,
在△ADB中,cosADB=
在△ADC中,cosADC=
又∠ADB+∠ADC=180°
∴cosADB=cos(180°-∠ADC)=-cosADC
∴
解得,x=2, 所以,BC边长为2
评述:此题要启发学生注意余弦定理建立方程的功能,体会互补角的余弦值互为相反数这一性质的应用,并注意总结这一性质的适用题型
另外,对于本节的例2,也可考虑上述性质的应用来求解sinA,思路如下:
由三角形内角平分线性质可得,设BD=5k,DC=3k,则由互补角∠ADC、∠ADB的余弦值互为相反数建立方程,求出BC后,再结合余弦定理求出cosA,再由同角平方关系求出sinA
三、课堂练习:
1半径为1的圆内接三角形的面积为0.25,求此三角形三边长的乘积
解:设△ABC三边为a,b,c则S△ABC=
∴
又,其中R为三角形外接圆半径
∴, ∴abc=4RS△ABC=4×1×0.25=1
所以三角形三边长的乘积为1
评述:由于题设条件有三角形外接圆半径,故联想正弦定理:
,其中R为三角形外接圆半径,与含有正弦的三角形面积公式S△ABC=发生联系,对abc进行整体求解
2在△ABC中,已知角B=45°,D是BC边上一点,AD=5,AC=7,DC=3,求
AB
解:在△ADC中,
cosC=
又0<C<180°,∴sinC=
在△ABC中,
∴AB=
评述:此题在求解过程中,先用余弦定理求角,再用正弦定理求边,要求学生注意正、余弦定理的综合运用
3在△ABC中,已知cosA=,sinB=,求cosC的值
解:∵cosA=<=cos45°,0<A<π
∴45°<A<90°, ∴sinA=
∵sinB=<=sin30°,0<B<π
∴0°<B<30°或150°<B<180°
若B>150°,则B+A>180°与题意不符
∴0°<B<30° cosB=
∴cos(A+B)=cosA·cosB-sinA·sinB=
又C=180°-(A+B)
∴cosC=cos[180°-(A+B)]=-cos(A+B)=-
评述:此题要求学生在利用同角的正、余弦平方关系时,应根据已知的三角函数值具体确定角的范围,以便对正负进行取舍,在确定角的范围时,通常是与已知角接近的特殊角的三角函数值进行比较
四、小结 通过本节学习,我们进一步熟悉了三角函数公式及三角形的有关性质,综合运用了正、余弦定理求解三角形的有关问题,要求大家注意常见解题方法与解题技巧的总结,不断提高三角形问题的求解能力
五、课后作业:
六、板书设计(略)
七、课后记及备用资料:
1正、余弦定理的综合运用
余弦定理是解斜三角形中用到的主要定理,若将正弦定理代入得:
sin2A=sin2B+sin2C-2sinBsinCcosA
这是只含有三角形三个角的一种关系式,利用这一定理解题,简捷明快,下面举例说明之
[例1]在△ABC中,已知sin2B-sin2C-sin2A=sinAsinC,求B的度数
解:由定理得sin2B=sin2A+sin2C-2sinAsinCcosB,
∴-2sinAsinCcosB=sinAsinC
∵sinAsinC≠0 ∴cosΒ=- ∴B=150°
[例2]求sin210°+cos240°+sin10°cos40°的值
解:原式=sin210°+sin250°+sin10°sin50°
在sin2A=sin2B+sin2C-2sinBsinCcosA中,令B=10°,C=50°,
则A=120°
sin2120°=sin210°+sin250°-2sin10°sin50°cos120°
=sin210°+sin250°+sin10°sin50°=()2=
[例3]在△ABC中,已知2cosBsinC=sinA,试判定△ABC的形状
解:在原等式两边同乘以sinA得:2cosBsinAsinC=sin2A,
由定理得sin2A+sin2C-sin2Β=sin2A,
∴sin2C=sin2B∴B=C
故△ABC是等腰三角形
2一题多证
[例4]在△ABC中已知a=2bcosC,求证:△ABC为等腰三角形
证法一:欲证△ABC为等腰三角形可证明其中有两角相等,因而在已知条件中化去边元素,使只剩含角的三角函数由正弦定理得a=
∴2bcosC=,即2cosC·sinB=sinA=sin(B+C)=sinBcosC+cosBsinC
∴sinBcosC-cosBsinC=0
即sin(B-C)=0,∴B-C=nπ(n∈Z)
∵B、C是三角形的内角,∴B=C,即三角形为等腰三角形
证法二:根据射影定理,有a=bcosC+ccosB,
又∵a=2bcosC∴2bcosC=bcosC+ccosB∴bcosC=ccosB,即
又∵∴即tanB=tanC
∵B、C在△ABC中,∴B=C∴△ABC为等腰三角形
证法三:∵cosC=∴
化简后得b2=c2∴b=c ∴△ABC是等腰三角形
湘教版必修23.4函数y=(“x“)的图像与性质教案: 这是一份湘教版必修23.4函数y=(“x“)的图像与性质教案,共6页。教案主要包含了讲解范例,课堂练习,课后作业,板书设计,课后记及备用资料等内容,欢迎下载使用。
高中数学湘教版必修24.1什么是向量第1课时教学设计及反思: 这是一份高中数学湘教版必修24.1什么是向量第1课时教学设计及反思,共5页。教案主要包含了复习引入,讲解新课,讲解范例,课堂练习,小结 ,课后作业,板书设计,试题等内容,欢迎下载使用。
湘教版必修25.3简单的三角恒等变换教案: 这是一份湘教版必修25.3简单的三角恒等变换教案,共5页。教案主要包含了复习引入,讲解新课,讲解范例,课堂练习,小结 余弦定理及其应用,课后作业,板书设计,课后记等内容,欢迎下载使用。