数学湘教版5.2二倍角的三角函数教学设计
展开
这是一份数学湘教版5.2二倍角的三角函数教学设计,共4页。教案主要包含了教学目标,教学重点,教学难点,教材分析,教学过程,作业布置,教学反思等内容,欢迎下载使用。
【教学目标】
一、知识与技能
以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用。
二、过程与方法
通过二倍角的正弦、余弦和正切公式的推导,体会转化化归、由一般到特殊的数学思想方法。
三、情感、态度、价值观
通过学习,使同学对三角函数之间的关系有更深的认识,增强学生逻辑推理和综合分析能力。
【教学重点】
以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式;
【教学难点】
二倍角的理解及其灵活运用.
【教材分析】
本节在学习了两角和与差的三角函数的基础上,进一步学习具有“二倍角”关系的正弦、余弦、正切公式,它既是两角和与差的公式的特殊化,又为以后的学习提供了理论基础,因此,对这一节的学下就显得尤为重要。
【教学过程】
一、情景引入
生活中我们常常遇见这样一个现象:对于一件商品,刚出现的时候,价格会非常高,随着时间的推移,商品的价格会逐渐下降,甚至于出现打折的情况,反过来看其实就是原始价格是现在价格的多少倍。对于这个“倍”字,我们自然而然的想到乘法和除法,对于乘法我们知道就是加法的另外一种运算,例如:6=3+3=32。同样的角与角之间也有一个倍数关系,例如: 60度角是30度角的二倍,角是角
的二倍。而对于角都有三角函数值,那么角的三角函数值怎样计算呢?由乘法我们可以知道,那么对于角就可以转换成角。
首先回顾一下两角和与差的正弦、余弦和正切公式
; ;
;
我们由此能否得到的公式呢?(学生自己动手推导并说明过程)
设计意图
高中学生已经具有丰富的生活经验和一定的科学知识,因此选择感兴趣的、与其生活实际密切相关的素材,此情景设计应该有助于学生对知识的发生发展的理解,而对于这一部分知识只有先理解了,后面对于公式的记忆和应用才能信手拈来。
二、公式推导:
;;.
思考:
1.把上述关于的式子能否变成只含有或形式的式子呢?
;
.
2、.把上述关于的式子能否变成只含有形式的式子呢?
3、.二倍角公式中,“倍”字如何理解?
(1) (2) (3) (4)
设计意图
让学生深刻理解体会二倍角之间的倍数关系,学生通过自己动手检验公式是否正确,从中让学生自己发现并总结。
三、例题讲解
例1.
四、巩固练习
(1)
(2)
(3)
(4)
(5)
(6)
五、直击高考
已知函数,求的最大值和最小正周期。
(学生在此题的基础上提出其他问题并解决)
设计意图
对于例题的讲解以及练习巩固和延伸,例题和练习都很简单,直接利用公式就可以解决,主要目的是帮助学生巩固三角函数倍角本质特征;而对于延伸的一个题目主要是引导学生自主探究三角函数有关问题的思想方法以及三角函数的综合应用。
六、课堂小结:
(1)二倍角的正弦、余弦、正切公式
(2)对公式的理解以及灵活运用,注意“倍”角是相对的
【作业布置】
思考:如何得到三倍角公式?
【教学反思】
教学设计紧扣课程标准的要求,重点放在二倍角三角函数的理解上。背景很简单,就是对乘法的理解,认知过程符合学生的认知特点和学生的身心发展规律,这样有利学生的思考。通过问题引导学生自主探究二倍角的三角函数的生成过程,让学生在情境中活动,在活动中体验数学与自然和社会的联系、新旧知识的内在联系,在体验中领悟数学的价值,使学生在理解数学的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。《课标》把发展学生的数学应用意识和创新意识作为其目标之一, 在教学中不仅要突出知识的来龙去脉还要为学生创设应用实践的空间,促进学生在学习和实践过程中形成和发展数学应用意识,提高学生的直觉猜想、归纳抽象、数学地提出、分析、解决问题的能力, 发展学生的数学应用意识和创新意识,使其上升为一种数学意识,自觉地对客观事物中蕴涵的一些数学模式作出思考和判断。在解答问题的过程中体验到从数学的角度运用学过的数学思想、数学思维、数学方法去观察生活、解决实际问题,增进了他们对数学的理解和应用数学的信心。
相关教案
这是一份湘教版(2019)必修 第二册2.2 二倍角的三角函数优秀教学设计,共3页。教案主要包含了课程标准,教学目标,重点重点,教学难点,教学过程,教学反思,板书设计等内容,欢迎下载使用。
这是一份湘教版必修25.2二倍角的三角函数教案,共7页。教案主要包含了复习引入,讲解范例,课堂练习,课后作业,板书设计,课后记及备用资料等内容,欢迎下载使用。
这是一份湘教版5.2二倍角的三角函数教学设计及反思,共6页。教案主要包含了复习引入,讲解范例,课堂练习,课后作业,板书设计,课后记等内容,欢迎下载使用。