![《指数函数》学案1(湘教版必修1)第1页](http://m.enxinlong.com/img-preview/3/3/12480396/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
高中数学湘教版必修12.1指数函数导学案
展开
这是一份高中数学湘教版必修12.1指数函数导学案,共2页。
指数函数 一.课题:指数函数二.学习目标: 1.掌握指数形式的复合函数的单调性的证明方法;2.掌握指数形式的复合函数的奇偶性的证明方法;3.培养学生的数学应用意识。三.学习重点:函数单调性、奇偶性的证明通法四.学习难点:指数函数的性质应用五.学习过程:(一)复习:(提问)1.指数函数的图象及性质2.判断及证明函数单调性的基本步骤:假设→作差→变形→判断3.判断及证明函数奇偶性的基本步骤:(1)考查函数定义域是否关于原点对称;(2)比较与或者的关系;(3)根据函数奇偶性定义得出结论。(二)新课讲解:例1.当时,证明函数 是奇函数。证明:由得,,故函数定义域关于原点对称。∴所以,函数 是奇函数。评析:此题证明的结构仍是函数奇偶性的证明,但在证明过程中的恒等变形用到推广的实数指数幂运算性质。例2.设是实数,,(1)试证明:对于任意在为增函数;(2)试确定的值,使为奇函数。分析:此题虽形式较为复杂,但应严格按照单调性、奇偶性的定义进行证明。还应要求学生注意不同题型的解答方法。(1)证明:设,则,由于指数函数在上是增函数,且,所以即,又由,得,,所以,即.因为此结论与取值无关,所以对于取任意实数,在为增函数。评述:上述证明过程中,在对差式正负判断时,利用了指数函数的值域及单调性。(2)解:若为奇函数,则,即变形得:,解得:,所以,当时, 为奇函数。评述:此题并非直接确定值,而是由已知条件逐步推导值。应要求学生适应这种题型。六.练习:(1)已知函数为偶函数,当时,,求当时,的解析式。(2)判断的单调区间。 七.小结:1.灵活运用指数函数的性质,并掌握函数单调性,奇偶性证明的通法。 八.作业: 补充:1.已知函数,(1)判断函数的奇偶性;(2)求证函数在上是增函数。2.函数的单调递减区间是 .3.已知函数定义域为,当时有,求的解析式。
相关学案
这是一份数学必修12.1指数函数学案设计,共2页。学案主要包含了学习目标,学法指导,教学过程,课堂小练,课堂小结,学习感悟,作业等内容,欢迎下载使用。
这是一份高中数学2.1指数函数学案,共6页。
这是一份高中数学湘教版必修12.1指数函数学案及答案,共2页。学案主要包含了学习目标,学法指导,教学过程,课堂小练,课堂小结,学习感悟,作业等内容,欢迎下载使用。