|学案下载
终身会员
搜索
    上传资料 赚现金
    第24讲-等差数列及其前n项和(解析版)学案
    立即下载
    加入资料篮
    第24讲-等差数列及其前n项和(解析版)学案01
    第24讲-等差数列及其前n项和(解析版)学案02
    第24讲-等差数列及其前n项和(解析版)学案03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第24讲-等差数列及其前n项和(解析版)学案

    展开
    这是一份第24讲-等差数列及其前n项和(解析版)学案,共23页。

    第24讲-等差数列及其前n项和
    一、 考情分析
    1.理解等差数列的概念;
    2.掌握等差数列的通项公式与前n项和公式;
    3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题;
    4.体会等差数列与一次函数的关系.
    二、 知识梳理
    1.等差数列的概念
    (1)如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.
    数学语言表达式:an+1-an=d(n∈N+,d为常数).
    (2)如果三个数x,A,y组成等差数列,那么A叫做x和y的等差中项,且A=.
    2.等差数列的通项公式与前n项和公式
    (1)若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d.
    (2)前n项和公式:Sn=na1+=.
    3.等差数列的性质
    (1)通项公式的推广:an=am+(n-m)d(n,m∈N+).
    (2)若{an}为等差数列,且k+l=m+n(k,l,m,n∈N+),则ak+al=am+an.
    (3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N+)是公差为md的等差数列.
    (4)若Sn为等差数列{an}的前n项和,则数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.
    (5)若Sn为等差数列{an}的前n项和,则数列也为等差数列.
    [微点提醒]
    1.已知数列{an}的通项公式是an=pn+q(其中p,q为常数),则数列{an}一定是等差数列,且公差为p.
    2.在等差数列{an}中,a1>0,d<0,则Sn存在最大值;若a1<0,d>0,则Sn存在最小值.
    3.等差数列{an}的单调性:当d>0时,{an}是递增数列;当d<0时,{an}是递减数列;当d=0时,{an}是常数列.
    4.数列{an}是等差数列⇔Sn=An2+Bn(A,B为常数).
    三、 经典例题
    考点一 等差数列基本量的运算
    【例1-1】(2020·山西省太原五中高三月考(理))已知是公差为1的等差数列,为的前项和,若,则( )
    A. B. C. D.
    【答案】B
    【解析】由得,解得.
    【例1-2】(2012·辽宁省高考真题(理))在等差数列{an}中,已知a4+a8=16,则该数列前11项和S11=( )
    A.58 B.88 C.143 D.176
    【答案】B
    【解析】等差数列前n项和公式,.
    【例1-3】(2020·黑龙江省大庆实验中学高三月考(文))(2017新课标全国I理科)记为等差数列的前项和.若,,则的公差为
    A.1 B.2
    C.4 D.8
    【答案】C
    【解析】设公差为,,,联立解得,故选C.
    【例1-4】(2008·陕西省高考真题(文))是等差数列,,,则该数列前10项和等于()
    A.64 B.100 C.110 D.120
    【答案】B
    【解析】设等差数列的公差为,由a1+a2=4,a7+a8=28,可得:
    解方程组可得.
    故选:B
    【例1-5】(2020·全国高考真题(理))北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )

    A.3699块 B.3474块 C.3402块 D.3339块
    【答案】C
    【解析】设第n环天石心块数为,第一层共有n环,
    则是以9为首项,9为公差的等差数列,,
    设为的前n项和,则第一层、第二层、第三层的块数分
    别为,因为下层比中层多729块,
    所以,

    即,解得,
    所以.
    故选:C

    规律方法 1.等差数列的通项公式及前n项和公式共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想来解决问题.
    2.数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.
    考点二 等差数列的判定与证明
    【例2】(2020·江苏省高三专题练习)已知各项均为正数的两个数列和满足:,,
    (1)设,,求证:数列是等差数列;
    (2)设,,且是等比数列,求和的值.
    【解析】(1)∵,∴.
    ∴.
    ∴.
    ∴数列是以1 为公差的等差数列.
    (2)∵,∴.
    ∴.(﹡)
    设等比数列的公比为,由知,下面用反证法证明
    若则,∴当时,,与(﹡)矛盾.
    若则,∴当时,,与(﹡)矛盾.
    ∴综上所述,.∴,∴.
    又∵,∴是公比是的等比数列.
    若,则,于是.
    又由即,得.
    ∴中至少有两项相同,与矛盾.∴.
    ∴.

    规律方法 1.证明数列是等差数列的主要方法:
    (1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数.
    (2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N+)都成立.
    2.判定一个数列是等差数列还常用到结论:
    (1)通项公式:an=pn+q(p,q为常数)⇔{an}是等差数列.
    (2)前n项和公式:Sn=An2+Bn(A,B为常数)⇔{an}是等差数列.问题的最终判定还是利用定义.
    考点三 等差数列的性质及应用
    【例3-1】(2020·浙江省高考真题)已知等差数列{an}的前n项和Sn,公差d≠0,.记b1=S2,bn+1=S2n+2–S2n,,下列等式不可能成立的是( )
    A.2a4=a2+a6 B.2b4=b2+b6 C. D.
    【答案】D
    【解析】对于A,因为数列为等差数列,所以根据等差数列的下标和性质,由可得,,A正确;
    对于B,由题意可知,,,
    ∴,,,.
    ∴,.
    根据等差数列的下标和性质,由可得,B正确;
    对于C,,
    当时,,C正确;
    对于D,,,

    当时,,∴即;
    当时,,∴即,所以,D不正确.
    【例3-2】(2020·梅河口市第五中学高三零模(理))已知为等差数列,为其前n项和,若,,则_______.
    【答案】6
    【解析】因为是等差数列,所以,即,又,所以,
    所以.故答案为6.
    【例3-3】(2020·全国高考真题(文))记为等差数列的前n项和.若,则__________.
    【答案】
    【解析】是等差数列,且,
    设等差数列的公差
    根据等差数列通项公式:
    可得
    即:
    整理可得:
    解得:
    根据等差数列前项和公式:
    可得:
    .
    故答案为:.
    【例3-4】(2020·上海高三专题练习)中位数为1010的一组数构成等差数列,其末项为 2015,则该数列的首项为__________.
    【答案】5.
    【解析】设数列的首项为,则,所以,故该数列的首项为,所以答案应填:.
    规律方法 1.项的性质:在等差数列{an}中,若m+n=p+q(m,n,p,q∈N+),则am+an=ap+aq.
    2.和的性质:在等差数列{an}中,Sn为其前n项和,则
    (1)S2n=n(a1+a2n)=…=n(an+an+1);
    (2)S2n-1=(2n-1)an.
    考点四 等差数列的前n项和及其最值
    【例4-1】(2020·海原县第一中学高三期末(文))记为等差数列的前项和,已知,.
    (1)求的通项公式;
    (2)求,并求的最小值.
    【解析】(1)设{an}的公差为d,由题意得3a1+3d=–15.
    由a1=–7得d=2.
    所以{an}的通项公式为an=2n–9.
    (2)由(1)得Sn=n2–8n=(n–4)2–16.
    所以当n=4时,Sn取得最小值,最小值为–16.
    点睛:数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.
    【例4-2】(2019·北京高考真题(文))设{an}是等差数列,a1=–10,且a2+10,a3+8,a4+6成等比数列.
    (Ⅰ)求{an}的通项公式;
    (Ⅱ)记{an}的前n项和为Sn,求Sn的最小值.
    【解析】(Ⅰ)设等差数列的公差为,
    因为成等比数列,所以,
    即,解得,所以.
    (Ⅱ)由(Ⅰ)知,
    所以;
    当或者时,取到最小值.
    【例4-3】(2020·海原县第一中学高三期末(文))记为等差数列的前项和,已知,.
    (1)求的通项公式;
    (2)求,并求的最小值.
    【解析】(1)设{an}的公差为d,由题意得3a1+3d=–15.
    由a1=–7得d=2.
    所以{an}的通项公式为an=2n–9.
    (2)由(1)得Sn=n2–8n=(n–4)2–16.
    所以当n=4时,Sn取得最小值,最小值为–16.
    规律方法 求等差数列前n项和Sn的最值的常用方法:
    (1)函数法:利用等差数列前n项和的函数表达式Sn=an2+bn(a≠0),通过配方或借助图象求二次函数的最值.
    (2)利用等差数列的单调性,求出其正负转折项,进而求Sn的最值.
    ①当a1>0,d<0时,满足的项数m使得Sn取得最大值为Sm(当am+1=0时,Sm+1也为最大值);
    ②当a1<0,d>0时,满足的项数m使得Sn取得最小值为Sm(当am+1=0时,Sm+1也为最小值).
    [方法技巧]
    1.证明等差数列可利用定义或等差中项的性质,另外还常用前n项和Sn=An2+Bn及通项an=pn+q来判断一个数列是否为等差数列.
    2.等差数列基本量思想
    (1)在解有关等差数列的基本量问题时,可通过列关于a1,d的方程组进行求解.
    (2)若奇数个数成等差数列,可设中间三项为a-d,a,a+d.
    若偶数个数成等差数列,可设中间两项为a-d,a+d,其余各项再依据等差数列的定义进行对称设元.
    (3)灵活使用等差数列的性质,可以大大减少运算量.
    3.用定义法证明等差数列应注意“从第2项起”,如证明了an+1-an=d(n≥2)时,应注意验证a2-a1是否等于d,若a2-a1≠d,则数列{an}不为等差数列.
    4.利用二次函数性质求等差数列前n项和最值时,一定要注意自变量n是正整数.
    四、 课时作业
    1.(2020·安达市第七中学高三月考(文))设为等差数列的前项和,,,则( )
    A.-6 B.-4 C.-2 D.2
    【答案】A
    【解析】由已知得
    解得.
    2.(2020·黑龙江省大庆一中高三三模(理))已知等差数列中,,前5项的和满足,则公差取值范围为( )
    A. B. C. D.
    【答案】C
    【解析】由题可知:

    又,所以,
    解得.
    3.(2020·吉林省实验高一期中)已知等差数列的前n项和为,且,则=(  )
    A.0 B.10 C.15 D.30
    【答案】C
    【解析】由等差数列性质可知:

    4.(2020·黑龙江省黑龙江实验中学高三三模(文))等差数列的首项为1,公差不为0,若,,成等比数列,则数列的前8项的和为( )
    A.64 B.22 C.-48 D.-6
    【答案】C
    【解析】等差数列的首项为,设公差().
    若,,成等比数列,
    所以,即, 解得,
    所以的前8项和为.
    5.(2020·全国高三其他(文))已知是等差数列,,.若,则( )
    A.98 B.99 C.100 D.101
    【答案】C
    【解析】设等差数列的公差为,
    则,解得,
    所以,
    由,解得.
    6.(2020·全国高三其他(理))《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布.此问题中若记该女子一月中的第天所织布的尺数为,则的值为( )
    A.56 B.52
    C.28 D.26
    【答案】D
    【解析】等差数列的首项,设公差为,故,解得,故.故选D.
    7.(2020·四川省阆中中学高三其他(文))已知等差数列的前n项和为,且,则( )
    A.21 B.27 C.30 D.36
    【答案】B
    【解析】由题知:,所以.
    .
    8.(2020·辽宁省大连二十四中高三其他(理))等差数列,,,的第四项等于( )
    A. B. C. D.
    【答案】B
    【解析】由题得.
    所以等差数列的前三项为0,3,6,公差为3,
    所以等差数列的第四项为9.
    9.(2020·全国高三(文))在等差数列中,,则的前项的和为( )
    A. B. C. D.
    【答案】A
    【解析】由等差数列的性质可得,由等差数列的前项和公式可知,等差数列的前项和为,故选:A.
    10.(2020·河南省高三三模(文))已知Sn为等差数列的前n项和,若,则=( )
    A.﹣2 B.0 C.2 D.10
    【答案】B
    【解析】设等差数列的公差为d,由,
    所以
    则.
    11.(2020·黑龙江省哈尔滨三中高三三模(文))数列是等差数列,且,,那么( )
    A. B. C.5 D.-5
    【答案】B
    【解析】由于数列是等差数列,所以,
    又,,∴,解得,故选:B.
    12.(2019·哈尔滨市第一中学校高三开学考试(文))在等差数列{an}中,已知a4+a8=16,则该数列前11项和S11=( )
    A.58 B.88 C.143 D.176
    【答案】B
    【解析】等差数列前n项和公式,.
    13.(2020·湖北省高三期末(文))设Sn是等差数列{an}的前n项和,若,则为( )
    A. B. C. D.
    【答案】A
    【解析】设,根据是一个首项为a,公差为a的等差数列,各项分别为a,2a,3a,4a..
    14.(2020·甘肃省兰州一中高三一模(理))已知正项等比数列中,,且成等差数列,则该数列公比为( )
    A. B. C. D.
    【答案】C
    【解析】由于成等差数列,所以,所以,即,解得.
    15.(2020·江西省新余一中高一月考)《周脾算经》有记载:一年有二十四个节气,每个节气晷(gui)长损益相同,晷是按照日影测定时刻的仪器,晷长即所测定的影子的长度,二十四节气及晷长变化如图所示,相邻两个节气晷长变化量相同,周而复始,若冬至晷长最长是一丈三尺五寸,夏至晷长最短是一尺五寸,(一丈等于10尺,一尺等于10寸),则秋分节气的晷长是( )

    A.七尺五寸 B.二尺五寸 C.五尺五寸 D.四尺五寸
    【答案】A
    【解析】由题意从夏至到秋分到冬至的过程中晷长为等差数列,设为.
    则,,则公差.
    秋分晷长为.
    所以秋分节气的晷长是七尺五寸
    16.(2020·湖北省高三期末(理))已知是等差数列,若,,成等比数列,且公比为,则=( )
    A. B. C. D.
    【答案】C
    【解析】设是公差为的等差数列,
    若,,成等比数列,可得,
    即,
    化为,解得,则,
    则公比为,故选:C.
    17.(2020·齐齐哈尔市朝鲜族学校高一期中)已知数列的前项和,则的通项公式为( )
    A. B.
    C. D.
    【答案】B
    【解析】当时,;当时,;因此的通项公式为,选B.
    18.(2020·海东市教育研究室高三其他(理))在等比数列中,,且、、成等差数列,则公比( )
    A. B.或 C. D.或
    【答案】C
    【解析】在等比数列中,,则其公比,
    由题意可得,即,
    则,即,解得或(舍去).
    19.(2020·全国高三其他(理))等差数列满足,,则( )
    A.-2 B.2 C.-4 D.4
    【答案】B
    【解析】设数列的公差为d,
    则由,可得,解得,
    所以.
    20.(2020·湖北省沙市中学高三三模(文))设等差数列前项和为,若,,则( )
    A.13 B.15 C.17 D.19
    【答案】D
    【解析】因为,,所以,
    即,解得,所以.
    21.(2020·黑龙江省铁人中学高三其他(理))已知数列的各项均为正数,其前项和满足,设,为数列的前项和,则( )
    A. B. C. D.
    【答案】D
    【解析】由得,作差可得:
    ,又得,
    则所以,
    …,
    所以.
    22.(2020·黑龙江省哈尔滨三中高三三模(文))已知数列,,则数列的前100项和为( )
    A. B. C. D.
    【答案】B
    【解析】由题意知, 当时,;
    当时,,所以数列的前100项和


    .
    23.(2020·黑龙江省哈尔滨三中高三二模(理))等差数列的前项和为,,,则取最小值时,的值为( )
    A.2 B.3 C.4 D.5
    【答案】C
    【解析】设等差数列的首项为,公差为,
    由于,,
    则,
    解得:,

    由,得,,
    数列自第5项起大于0,则取最小值时,的值为4.
    24.(2020·黑龙江省大庆实验中学高三月考(文))(2017新课标全国I理科)记为等差数列的前项和.若,,则的公差为
    A.1 B.2
    C.4 D.8
    【答案】C
    【解析】设公差为,,,联立解得,故选C.
    25.(2020·河北省高三二模(文))已知正项等比数列的公比为q,若,且,则( )
    A.19 B.45 C.55 D.100
    【答案】C
    【解析】由题意,正项等比数列的公比为q,且,
    可得,,
    因为,即,所以.
    26.(2020·绥化市第一中学高一期中)ΔABC的内角A,B,C所对的边分别为 a,b,c,若角A,B,C依次成等差数列,且a=1,b=3,则ΔABC的面积S=(   )
    A.2 B.3 C.32 D.2
    【答案】C
    【解析】∵A,B,C依次成等差数列,
    ∴A+B+C=3B=180∘,B=60∘,
    因为a=1,b=3,
    ∴由余弦定理得b2=a2+c2−2accosB,得c=2,
    ∴SΔABC=12acsinB=32,故选C.
    27.(2020·全国高三月考(理))我国古代名著《九章算术》中有这样一段话:“今有金锤,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,中间三尺重几何.”意思是:“现有一根金锤,长5尺,头部1尺,重4斤,尾部1尺,重2斤,且从头到尾,每一尺的重量构成等差数列,问中间三尺共重多少斤?”( )
    A.6斤 B.7斤 C.8斤 D.9斤
    【答案】D
    【解析】原问题等价于等差数列中,已知,求的值.
    由等差数列的性质可知:,
    则,即中间三尺共重斤.
    28.(2020·全国高三其他(文))在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:相逢时良马比驾马多行(  )
    A.1125里 B.920里 C.820里 D.540里
    【答案】D
    【解析】设良马每天所行路程为,则是以103为首项,以13为公差的等差数列,其前项和为,弩马每天所行路程为,则是以97为首项,以为公差的等差数列,其前项和为,
    设共用天二马相逢,
    则,
    所以,
    化简得,解得,


    ,故选D.
    29.(多选题)(2020·山东省高三三模)在悠久灿烂的中国古代文化中,数学文化是其中的一朵绚丽的奇葩.《张丘建算经》是我国古代有标志性的内容丰富的众多数学名著之一,大约创作于公元五世纪.书中有如下问题:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈,问日益几何?”.其大意为:“有一女子擅长织布,织布的速度一天比一天快,从第二天起,每天比前一天多织相同数量的布,第一天织尺,一个月共织了九匹三丈,问从第二天起,每天比前一天多织多少尺布?”.已知匹丈,丈尺,若这一个月有天,记该女子这一个月中的第天所织布的尺数为,,对于数列、,下列选项中正确的为( )
    A. B.是等比数列 C. D.
    【答案】BD
    【解析】由题意可知,数列为等差数列,设数列的公差为,,
    由题意可得,解得,,
    ,(非零常数),则数列是等比数列,B选项正确;
    ,,,A选项错误;
    ,,C选项错误;
    ,,
    所以,,D选项正确.
    30.(多选题)(2020·山东省济宁一中高三月考)等差数列是递增数列,满足,前项和为,下列选择项正确的是(  )
    A. B.
    C.当时最小 D.时的最小值为
    【答案】ABD
    【解析】由题意,设等差数列的公差为,
    因为,可得,解得,
    又由等差数列是递增数列,可知,则,故正确;
    因为,
    由可知,当或时最小,故错误,
    令,解得或,即时的最小值为,故正确.
    31.(多选题)(2020·山东省烟台三中高二期中)已知为等差数列,其前项和为,且,则以下结论正确的是( ).
    A. B.最小 C. D.
    【答案】ACD
    【解析】即,正确;
    当时,没有最小值,错误;
    ,正确;
    ,正确.
    32.(多选题)(2020·山东省实验中学高三月考)记数列的前项和为,若存在实数H,使得对任意的,都有,则称数列为“和有界数列”.下列说法正确的是( )
    A.若是等差数列,且公差,则是“和有界数列”
    B.若是等差数列,且是“和有界数列”,则公差
    C.若是等比数列,且公比,则是“和有界数列”
    D.若是等比数列,且是“和有界数列”,则的公比
    【答案】BC
    【解析】对于AB选项分析如下:若是等差数列,则.
    对于A选项,当时,,若,根据一次函数的性质可知,此时不存在符合题意的.所以A选项错误.
    对于B选项,是“和有界数列”,而,若,根据二次函数的性质可知,此时不存在符合题意的,故.所以B选项正确.
    对于CD选项分析如下:若是等比数列,则.
    对于C选项,若,则当时,,故存在实数H,使得对任意的,都有,即是“和有界数列”.所以C选项正确.
    对于D选项,若是等比数列,且是“和有界数列”,的取值可能为,此时,所以存在实数H,使得对任意的,都有.所以D选项错误.
    33.(2020·四川省南充市第一中学高二期中(理))已知等差数列满足,.
    (Ⅰ)求的通项公式;
    (Ⅱ)设是等比数列的前项和,若,,求.
    【解析】(I)设等差数列的公差为,∵.∴,,
    解得,, ∴.
    (Ⅱ)设等比数列的公比为,,,联立解得,,
    ∴,或.
    34.(2020·黑龙江省大庆一中高三三模(文))已知等差数列满足,.
    (1)求数列的通项公式;
    (2)若,求数列的前项和.
    【解析】(1)设等差数列的公差为.
    因为,所以,所以,解得.
    所以.
    检验:当时,,
    则,合乎题意.
    因此,数列的通项公式为;
    (2)由(1)知.
    所以.
    所以数列的前项和.
    35.(2019·哈尔滨市第一中学校高三开学考试(文))设等差数列的首项及公差都为整数,前项和为.
    (1)若,,求数列的通项公式;
    (2)若,,,求所有可能的数列的通项公式.
    【解析】(1)由,得.
    又,则,解得,
    因此,的通项公式是;
    (2)由,得,即,
    由①②得,即.
    由①③得,即.
    于是,又,故.④
    将④代入①②得.又,故或.
    当,时,;
    当当,时,.
    综上,所有可能的数列的通项公式是和.


    相关学案

    高考数学一轮复习第5章数列第2讲等差数列及其前n项和学案: 这是一份高考数学一轮复习第5章数列第2讲等差数列及其前n项和学案,共10页。

    第25讲-等比数列及其前n项和(解析版)学案: 这是一份第25讲-等比数列及其前n项和(解析版)学案,共21页。

    第25讲-等比数列及其前n项和(讲义版)学案: 这是一份第25讲-等比数列及其前n项和(讲义版)学案,共11页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        第24讲-等差数列及其前n项和(解析版)学案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map