专题24导数知识点与大题16道专练(基础题)(原卷版)-备战2022年高考数学大题分类提升专题学案
展开
这是一份专题24导数知识点与大题16道专练(基础题)(原卷版)-备战2022年高考数学大题分类提升专题学案,共5页。学案主要包含了导数的运算,利用单调性求参数的取值,函数的极值与其导数的关系,导数图象与原函数图象关系等内容,欢迎下载使用。
专题24导数知识点与大题16道专练(基础题)(原卷版)一.导数的定义:2.利用定义求导数的步骤:①求函数的增量:;②求平均变化率:;③取极限得导数:(下面内容必记)二、导数的运算:(1)基本初等函数的导数公式及常用导数运算公式:①;②;;③; ④ ⑤ ⑥;⑦; ⑧法则1:;(口诀:和与差的导数等于导数的和与差).法则2:(口诀:前导后不导相乘,后导前不导相乘,中间是正号)法则3:(口诀:分母平方要记牢,上导下不导相乘,下导上不导相乘,中间是负号)(2)复合函数的导数求法:①换元,令,则②分别求导再相乘③回代三.导数的物理意义1.求瞬时速度:物体在时刻时的瞬时速度就是物体运动规律在 时的导数,即有。2.V=s/(t) 表示即时速度。a=v/(t) 表示加速度。四.导数的几何意义:函数在处导数的几何意义,曲线在点处切线的斜率是。于是相应的切线方程是:。题型三.用导数求曲线的切线注意两种情况:(1)曲线在点处切线:性质:。相应的切线方程是:(2)曲线过点处切线:先设切点,切点为 ,则斜率k=,切点 在曲线上,切点在切线上,切点坐标代入方程得关于a,b的方程组,解方程组来确定切点,最后求斜率k=,确定切线方程。五.函数的单调性:设函数在某个区间内可导,(1)该区间内为增函数; (2)该区间内为减函数;注意:当在某个区间内个别点处为零,在其余点处为正(或负)时,在这个区间上仍是递增(或递减)的。(3)在该区间内单调递增在该区间内恒成立;(4)在该区间内单调递减在该区间内恒成立;题型一、利用导数证明(或判断)函数f(x)在某一区间上单调性:步骤: (1)求导数 (2)判断导函数在区间上的符号(3)下结论①该区间内为增函数; ②该区间内为减函数;题型二、利用导数求单调区间求函数单调区间的步骤为:(1)分析 的定义域; (2)求导数 (3)解不等式,解集在定义域内的部分为增区间(4)解不等式,解集在定义域内的部分为减区间题型三、利用单调性求参数的取值(转化为恒成立问题)思路一.(1)在该区间内单调递增在该区间内恒成立;(2)在该区间内单调递减在该区间内恒成立;思路二.先求出函数在定义域上的单调增或减区间,则已知中限定的单调增或减区间是定义域上的单调增或减区间的子集。注意:若函数f(x)在(a,c)上为减函数,在(c,b)上为增函数,则x=c两侧使函数(x)变号,即x=c为函数的一个极值点,所以六、函数的极值与其导数的关系:1.①极值的定义:设函数在点附近有定义,且若对附近的所有的点都有(或,则称为函数的一个极大(或小)值,为极大(或极小)值点。②可导数在极值点处的导数为0(即),但函数在某点处的导数为0,并不一定函数在该处取得极值(如在处的导数为0,但没有极值)。③求极值的步骤:第一步:求导数;第二步:求方程的所有实根;第三步:列表考察在每个根附近,从左到右,导数的符号如何变化,若的符号由正变负,则是极大值;若的符号由负变正,则是极小值;若的符号不变,则不是极值,不是极值点。2、函数的最值:①最值的定义:若函数在定义域D内存,使得对任意的,都有,(或)则称为函数的最大(小)值,记作(或)②如果函数在闭区间上的图象是一条连续不间断的曲线,则该函数在闭区间上必有最大值和最小值。③求可导函数在闭区间上的最值方法:第一步;求在区间内的极值;第二步:比较的极值与、的大小:第三步:下结论:最大的为最大值,最小的为最小值。注意:1、极值与最值关系:函数的最值是比较整个定义域区间的函数值得出的,函数的最大值和最小值点可以在极值点、不可导点、区间的端点处取得。极值≠最值。函数f(x)在区间[a,b]上的最大值为极大值和f(a) 、f(b)中最大的一个。最小值为极小值和f(a) 、f(b)中最小的一个。2.函数在定义域上只有一个极值,则它对应一个最值(极大值对应最大值;极小值对应最小值)3、注意:极大值不一定比极小值大。如的极大值为,极小值为2。注意:当x=x0时,函数有极值 f/(x0)=0。但是,f/(x0)=0不能得到当x=x0时,函数有极值;判断极值,还需结合函数的单调性说明。题型一、求极值与最值题型二、导数的极值与最值的应用题型四、导数图象与原函数图象关系 导函数 原函数 的符号 单调性 与x轴的交点且交点两侧异号 极值 的增减性 的每一点的切线斜率的变化趋势 (的图象的增减幅度) 的增 的每一点的切线斜率增大(的图象的变化幅度快) 减 的每一点的切线斜率减小 (的图象的变化幅度慢) 1.已知函数f(x)=x+,g(x)=2x+a.(1)求函数f(x)=x+在上的值域;(2)若∀x1∈,∃x2∈[2,3],使得f(x1)≥g(x2),求实数a的取值范围.2.已知函数.(1)求函数的单调递减区间;(2)求函数在上的最大值和最小值.3.(1)求导:(2)求函数在处的导数.4.函数f(x)=x3+ax2+bx+c,曲线y=f(x)上点P(1,f(1))处的切线方程为y=3x+1(1)若y=f(x)在x=﹣2时有极值,求函数y=f(x)在[﹣3,1]上的最大值;(2)若函数y=f(x)在区间[﹣2,1]上单调递增,求b的取值范围.5.(本题满分16分)已知函数,,(其中),设.(Ⅰ)当时,试将表示成的函数,并探究函数是否有极值(Ⅱ)当时,若存在,使成立,试求k的范围.6.函数在点处的切线斜率为.(1)求实数a的值;(2)求的单调区间和极值.7.已知函数,其中,已知在处取得极值.(1)求的解析式;(2)求在点处切线的方程.8.已知函数.(1)若在区间上为增函数,求a的取值范围.(2)若的单调递减区间为,求a的值.9.已知函数.(1)求的单调区间;(2)求函数的极值;(要列表).10.已知函数,(1)计算函数的导数的表达式;(2)求函数的值域.11.已知函数f(x)=ax2ex﹣1(a≠0).(1)求函数f(x)的单调区间;(2)已知a>0且x∈[1,+∞),若函数f(x)没有零点,求a的取值范围.12.已知函数.(1)求函数在上的最大值和最小值.(2)过点作曲线的切线,求此切线的方程.13.函数在点处的切线为.(1)若与直线平行,求实数的值;(2)若与直线垂直,求实数的值.14.已知函数与函数在处有公共的切线.(1)求实数a,b的值;(2)记,求的极值.15.已知函数在处取得极值,且在点处的切线的斜率为2.(1)求a、b的值;(2)求函数的单调区间和极值;(3)若关于x的方程在上恰有两个不相等的实数根,求实数m的取值范围.16.(本小题满分14分)已知函数()(1) 判断函数的单调性;(2) 是否存在实数使得函数在区间上有最小值恰为? 若存在,求出的值;若不存在,请说明理由.
相关学案
这是一份专题7概率(文)知识点与大题16道专练(基础题)(原卷版)-备战2022年高考数学大题分类提升专题学案,共15页。
这是一份专题26导数知识点与大题16道专练(培优题)(解析版)-备战2022年高考数学大题分类提升专题学案,共27页。学案主要包含了导数的运算,利用单调性求参数的取值,函数的极值与其导数的关系,导数图象与原函数图象关系等内容,欢迎下载使用。
这是一份专题26导数知识点与大题16道专练(培优题)(原卷版)-备战2022年高考数学大题分类提升专题学案,共6页。学案主要包含了导数的运算,利用单调性求参数的取值,函数的极值与其导数的关系,导数图象与原函数图象关系等内容,欢迎下载使用。