专题13立体几何(文)知识点与大题16道专练(基础题)(原卷版)-备战2022年高考数学大题分类提升专题学案
展开
这是一份专题13立体几何(文)知识点与大题16道专练(基础题)(原卷版)-备战2022年高考数学大题分类提升专题学案,共9页。
专题13立体几何(文)知识点与大题16道专练(基础题)(原卷版)一.空间几何体的三视图正视图:光线从几何体的前面向后面正投影得到的投影图;反映了物体的高度和长度侧视图:光线从几何体的左面向右面正投影得到的投影图;反映了物体的高度和宽度俯视图:光线从几何体的上面向下面正投影得到的投影图。反映了物体的长度和宽度三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”二.空间几何体的直观图斜二测画法的基本步骤:①建立适当直角坐标系(尽可能使更多的点在坐标轴上)②建立斜坐标系,使=450(或1350)③画对应图形在已知图形平行于X轴的线段,在直观图中画成平行于X‘轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y‘轴,且长度变为原来的一半; 直观图与原图形的面积关系:三.空间几何体的表面积与体积⑴圆柱侧面积; ⑵圆锥侧面积:⑶圆台侧面积: 球的表面积和体积 .正三棱锥是底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥。 正四面体是每个面都是全等的等边三角形的三棱锥。一. 平面基本性质即三条公理 公理1公理2公理3图形语言文字语言如果一条直线上的两点在一个平面内,那么这条直线在此平面内.过不在一条直线上的三点,有且只有一个平面.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号语言作用判断线在面内确定一个平面证明多点共线公理2的三条推论:推论1 经过一条直线和这条直线外的一点,有且只有一个平面; 推论2 经过两条相交直线,有且只有一个平面;推论3 经过两条平行直线,有且只有一个平面.二.直线与直线的位置关系共面直线: 相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。(既不平行,也不相交)三.直线与平面的位置关系有三种情况:在平面内——有无数个公共点 . 符号 a α相交——有且只有一个公共点 符号 a∩α= A平行——没有公共点 符号 a∥α说明:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示1.直线和平面平行的判定(1)定义:直线和平面没有公共点,则称直线平行于平面;(2)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。简记为:线线平行,则线面平行。 符号: 2.直线和平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。简记为:线面平行,则线线平行. 符号: 3.直线与平面垂直⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。⑵判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。简记为:线线垂直,则线面垂直. 符号:4.直线与平面垂直性质Ⅰ:垂直于同一个平面的两条直线平行。 符号: 性质Ⅱ:垂直于同一直线的两平面平行 符号: 推论:如果两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.符号语言:a∥b, a⊥α,⇒b⊥α四.平面与平面的位置关系:平行——没有公共点: 符号 α∥β相交——有一条公共直线: 符号 α∩β=a1.平面与平面平行的判定(1)定义:两个平面没有公共点,称这两个平面平行;(2)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。简记为:线面平行,则面面平行. 符号:2.平面与平面平行的性质定理:如果两个平行的平面同时与第三个平面相交,那么它们的交线平行。简记为:面面平行,则线线平行. 符号:补充:平行于同一平面的两平面平行; 夹在两平行平面间的平行线段相等;两平面平行,一平面上的任一条直线与另一个平面平行;3.平面与平面垂直的判定⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。⑵判定定理:一个平面经过另一个平面的一条垂线,则这两个平面垂直。 简记为:线面面垂直,则面面垂直. 符号: 推论:如果一个平面平行于另一个平面的一条垂线,则这个平面与另一个平面垂直。4.平面与平面垂直的性质定理:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。简记为:面面垂直,则线面垂直. 证明线线平行的方法①三角形中位线 ②平行四边形 ③线面平行的性质 ④平行线的传递性 ⑤面面平行的性质 ⑥垂直于同一平面的两直线平行; 证明线线垂直的方法①定义:两条直线所成的角为90°;(特别是证明异面直线垂直); ②线面垂直的性质③利用勾股定理证明两相交直线垂直;④利用等腰三角形三线合一证明两相交直线垂直;五:三种成角1.异面直线成角步骤:1、平移,转化为相交直线所成角;2、找锐角(或直角)作为夹角;3、求解注意:取值范围:(0。,90。].2.线面成角:斜线与它在平面上的射影成的角,取值范围:(0。,90。].如图:PA是平面的一条斜线,A为斜足,O为垂足,OA叫斜线PA在平面上射影,为线面角。3.二面角:从一条直线出发的两个半平面形成的图形 取值范围:(0。,180。) 六.点到平面的距离:定义法和等体积法 1.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,,侧面PAB底面,,(1)求证:平面(2)过AC的平面交PD于点M,若,求三棱锥的体积.2.如图,在三棱柱中,,点,分别是,的中点,平面平面.(1)求证:;(2)求证://平面.3.如图所示,在正方体ABCD-A1B1C1D1中,E,F,G,H分别是BC,CC1,C1D1,A1A的中点.求证:(1)BF∥HD1;(2)EG∥平面BB1D1D;(3)平面BDF∥平面B1D1H.4.如图所示,在棱长为2的正方体中,M是线段AB上的动点.(1)证明:平面;(2)若M是AB的中点,证明:平面平面;(3)求三棱锥的体积.5.如图,在直三棱柱中,分别为棱的中点,且(1)求证:平面平面;(2)求证:∥平面.6.(本题满分14分)已知点是正方形ABCD两对角线的交点,DE⊥平面ABCD,BF⊥平面ABCD,且AB=BF=2DE.(Ⅰ)求证:EO⊥平面AFC;(Ⅱ)试问在线段DF(不含端点)上是否存在一点R,使得CR∥平面ABF,若存在,请指出点R的位置;若不存在,请说明理由.7.如图,在直三棱柱中,,,,点是的中点.(1)求证:;(2)若,求三棱锥的体积.8.已知正方体,(1)证明:平面;(2)求异面直线与所成的角.9.已知四面体中面,, 垂足为,,为中点,,(1)求证: 面;(2)求点到面的距离.10.如图,在三棱锥中,,.,分别是,的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面平面;(Ⅲ)在图中作出点在底面的正投影,并说明理由.11.如图,在边长为2的菱形中,,现将沿边折到的位置.(1)求证:;(2)求三棱锥体积的最大值.12.已知圆台上、下底面的底面积分别为,,且母线长为13.(1)求圆台的高;(2)求圆台的侧面积.13.如图,某几何体的下部分是长、宽均为8,高为3的长方体,上部分是侧棱长都相等且高为3的四棱锥,求:(1)该几何体的体积;(2)该几何体的表面积.14.如图,在底面是菱形的四棱锥P—ABCD中,∠ABC=,PA=AC=a,PB=PD=,点E在PD上,且PE:ED=2:1.(I)证明PA⊥平面ABCD;(II)在棱PC上是否存在一点F,使BF//平面AEC?证明你的结论15.如图,四边形是直角梯形,∠=90°,∥,=1,=2,又=1,∠=120°,⊥,直线与直线所成的角为60°.(1)求证:平面⊥平面;(2)求三棱锥的体积.16.如图,已知四棱锥的底面为直角梯形,,,,且,M是的中点.(1) 证明:;(2) 求异面直线所成的角的余弦值.
相关学案
这是一份专题8概率(文)知识点与大题16道专练(中档题)(原卷版)-备战2022年高考数学大题分类提升专题学案,共14页。
这是一份专题7概率(文)知识点与大题16道专练(基础题)(原卷版)-备战2022年高考数学大题分类提升专题学案,共15页。
这是一份专题24导数知识点与大题16道专练(基础题)(原卷版)-备战2022年高考数学大题分类提升专题学案,共5页。学案主要包含了导数的运算,利用单调性求参数的取值,函数的极值与其导数的关系,导数图象与原函数图象关系等内容,欢迎下载使用。