所属成套资源:2022年中考数学一轮复习习题精选(含答案)
2022年中考数学一轮复习习题精选《三角形(含多边形及其内角和)》(含答案)
展开
这是一份2022年中考数学一轮复习习题精选《三角形(含多边形及其内角和)》(含答案),共14页。
A B C D
答案:D
2.(市丰台区初二期末)如图所示,△ABC中AC边上的高线是
A.线段DAB.线段BA
C.线段BCD.线段BD
答案:D
3.(市怀柔区初二期末)为估计池塘两岸A,B间的距离,小明的办法是在地面上取一点O,连接OA,OB,测得OB=15.1m,OA=25.6m.这样小明估算出A,B间的距离不会大于
A.26m B.38m C.40m D.41m
答案: D
4.(市平谷区初二期末)用直角三角板,作△ABC的高,下列作法正确的是
A B C D
答案:D
5.(延庆区八年级第一学区期末) 如图,将
SKIPIF 1 < 0 放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么 SKIPIF 1 < 0 中 SKIPIF 1 < 0 边上的高是
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
答案:A
6、(房山区二模)如图,在△ABC中,过点B作PB⊥BC于B,交AC于P,过点C作CQ⊥AB,交AB延长线于Q,则△ABC的高是
A.线段PB B.线段BC
C.线段CQ D.线段AQ
答案:C
7.(西城区九年级统一测试)如果一个正多边形的内角和等于 SKIPIF 1 < 0 ,那么该正多边形的一个外角等于( ).
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
答案:B
8.(延庆区初三统一练习)利用尺规作图,作△ABC边上的高AD,正确的是
A. B. C. D.
答案:B
9.(平谷区中考统一练习)一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是
A.3 B.4 C.6 D.12
答案B
10.(市大兴区检测)已知一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数是
A. 3 B. 4 C.5 D. 6
答案D
11.(海淀区第二学期练习)若正多边形的一个外角是120°,则该正多边形的边数是
A.6B. 5C. 4D.3
答案D
12.(门头沟区初三综合练习)如图所示,有一条线段是 SKIPIF 1 < 0 (AB>AC)的中线,该线段是
A.线段GH B.线段AD
C.线段AE D.线段AF
答案B
13.(海淀区第二学期练习)用三角板作 SKIPIF 1 < 0 的边 SKIPIF 1 < 0 上的高,下列三角板的摆放位置正确的是
A B C D
答案A
二、填空题
14.(延庆区初三统一练习)右图是一个正五边形,则∠1的度数是 .
答案:72°
15、(丰台区二模)正六边形每个内角的度数是 .
答案:120°
16.(昌平区初二年级期末)小龙平时爱观察也喜欢动脑,他看到路边的建筑和电线架等,发现了一个现象:一切需要稳固的物品都是由三角形这个图形构成的,当时他就思考,数学王国中不仅只有三角形,为何偏偏用三角形稳固它们呢?请你用所学的数学知识解释这一现象的依据为 .
答案:三角形具有稳定性
17.(市朝阳区初二年级第一学期期末)如图,点 SKIPIF 1 < 0 是线段 SKIPIF 1 < 0 上一点, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 .(用含 SKIPIF 1 < 0 的式子表示)
答案:900-α
18、(市海淀区八年级期末)如图,在四边形ABCD中,∠A=90°,∠D=40°,则∠B+∠C为 .
答案:230°
19、(市怀柔区初二期末)三角形的三个内角的度数比是1:1:2.则最大内角的度数是____________.
答案:90°
20、.(市怀柔区初二期末)如图,△ SKIPIF 1 < 0 中,BC边所在直线上的高是线段____________.
答案:AD
21.(市门头沟区八年级期末)年11月5日19时45分,我国在西昌卫星发射中心用长征三号乙运载火箭,以“一箭双星”的方式成功发射第二十四、二十五颗北斗导航卫星.这两颗卫星属于中圆地球轨道卫星,是我国北斗三号第一、二
颗组网卫星,开启了北斗卫星导航系统全球
组网的新时代.
如图所示,在发射运载火箭时,运载火箭
的发射架被焊接成了许多的三角形,这样
做的原因是: .
答案:略
22. (市顺义区八年级期末)已知: SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 .
答案: SKIPIF 1 < 0
23.(市顺义区八年级期末)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为 度.
答案:75
24.(市顺义区八年级期末)已知: 如图, SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 是高 SKIPIF 1 < 0 和 SKIPIF 1 < 0 的交点, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则线段 SKIPIF 1 < 0 的长为 .
答案:13
25.(石景山区初三毕业考试)若正多边形的一个外角是 SKIPIF 1 < 0 ,则该正多边形的边数是_______.
答案:八
26、(昌平区二模)10.如图,∠1是五边形ABCDE的一个外角.若∠1=60°,
则∠A+∠B+∠C+∠D的度数为_________.
答案:420°
27.(东城区一模)若多边形的内角和为其外角和的3倍,则该多边形的边数为________________.
答案8
三、解答题
28.(延庆区初三统一练习)如图,在△ABC中,AD平分∠BAC交BC于点D,
过点D 作DE∥AB交AC于点E.
求证:AE=DE.
证明:∵AD平分∠BAC
∴∠BAD =∠DAE,
∵DE∥AB
∴∠BAD =∠ADE ……3分
∴∠DAE =∠ADE ……4分
∴AE=DE ……5分
29.(市朝阳区一模)如图,BD是△ABC的角平分线,DE//BC交AB于点E.
(1)求证:BE=DE;
(2)若AB=BC=10,求DE的长.
解(1)证明:∵BD是△ABC的角平分线,
∴∠EBD=∠CBD.
∵DE//BC,
∴∠EDB=∠CBD.
∴∠EDB=∠EBD.
∴BE=DE. ……………………………………………………2分
(2)解:∵AB=BC,BD是△ABC的角平分线,
∴AD =DC. ………………………………………………………… 3分
∵DE//BC,
∴ SKIPIF 1 < 0 .……………………………………………………… 4分
∴ SKIPIF 1 < 0 .
∴ SKIPIF 1 < 0 . ………………………………………………………5分
30. (市朝阳区综合练习(一))如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB的中线.
求证:∠DAB=∠ACE.
∴∠CAB=∠B,CE⊥AB. ………………………………………2分
∴∠CAB+∠ACE=90°. …………………………………………3分
∵AD为△ACB的高线,
∴∠D=90°.
∴∠DAB+∠B=90°. ………………………………………4分
∴∠DAB=∠ACE. …………………………………………………5分
31.(门头沟区初三综合练习)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.
求∠DAC的度数.
解 ∵BE平分∠ABC,
∴∠ABC=2∠ABE=2×25°=50°, ………2分
∵AD是BC边上的高,
∴∠BAD=90°﹣∠ABC=90°﹣50°=40°, …………4分
∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20° ………………5分
32.(通州区一模)
答案:
33.(市大兴区检测)如图,在△ABC中,AB=AC,点D,点E
分别是BC,AC上一点,且DE⊥AD. 若∠BAD=55°,
∠B=50°,求∠DEC的度数.
解:∵AB=AC,
∴∠B=∠C.
∵∠B=50°,
∴∠C =50°.…………………… 1分
∴∠BAC=180°-50°-50°=80°.………………………………………………… 2分
∵∠BAD=55°,
∴∠DAE=25°.………………………………………………………………… 3分
∵DE⊥AD,
∴∠ADE=90°.………………………………………………………………… 4分
∴∠DEC=∠DAE+∠ADE=115°.………………………………………………5分
34.(东城区一模) 如图,在△ABC中,∠BAC=90°,AD⊥BC于点D. BF平分∠ABC交AD于点E,交AC于点F. 求证:AE=AF.
证明: ∵∠BAC=90°,
∴∠FBA+∠AFB=90°. -------------------1分
∵AD⊥BC,
∴∠DBE+∠DEB=90°.---------------- 2分
∵BE平分∠ABC,
∴∠DBE=∠FBA. -------------------3分
∴∠AFB=∠DEB. -------------------4分
∵∠DEB=∠FEA,
∴∠AFB=∠FEA.
∴AE=AF. -------------------5分
35.(市朝阳区初二年级第一学期期末)已知:如图,点 SKIPIF 1 < 0 , SKIPIF 1 < 0 在 SKIPIF 1 < 0 的边 SKIPIF 1 < 0 上, SKIPIF 1 < 0 , SKIPIF 1 < 0 .
求证: SKIPIF 1 < 0 .
证明:过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 . ………………………………………………1分
∵ SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 , SKIPIF 1 < 0 . ……………………………………………3分
∴ SKIPIF 1 < 0 .
即 SKIPIF 1 < 0 . ……………………………………………………5分
36.(市朝阳区初二年级第一学期期末)在等边 SKIPIF 1 < 0 外作射线 SKIPIF 1 < 0 ,使得 SKIPIF 1 < 0 和 SKIPIF 1 < 0 在直线 SKIPIF 1 < 0 的两侧, SKIPIF 1 < 0 ( SKIPIF 1 < 0 ),点 SKIPIF 1 < 0 关于直线 SKIPIF 1 < 0 的对称点为 SKIPIF 1 < 0 ,连接 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)依题意补全图1;
(2)在图1中,求 SKIPIF 1 < 0 的度数;
(3)直接写出使得 SKIPIF 1 < 0 是等腰三角形的 SKIPIF 1 < 0 的值.
备用图
图1
解:(1)补全的图形如图所示.
………………………………1分
(2)解:连接 SKIPIF 1 < 0 ,如图.
由点 SKIPIF 1 < 0 关于直线 SKIPIF 1 < 0 的对称点为 SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 垂直平分 SKIPIF 1 < 0 .
∴ SKIPIF 1 < 0 .
∴ SKIPIF 1 < 0 .
∵ SKIPIF 1 < 0 是等边三角形,
∴ SKIPIF 1 < 0 , SKIPIF 1 < 0 .
∴ SKIPIF 1 < 0 . ………………………………………………………………2分
∴ SKIPIF 1 < 0 .
∴在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 .
∴ SKIPIF 1 < 0 .
∴ SKIPIF 1 < 0 . …………………………………………………………3分
(3) SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .……………………………………………7分
37.(市东城区初二期末)如图,在△ABC中,AB =AC,AD⊥于点D,AM是△ABC的外角∠CAE的平分线.
(1)求证:AM∥BC;
(2)若DN平分∠ADC交AM于点N,判断△ADN的形状并说明理由.
解:(1)∵AB=AC,AD⊥BC,
∴∠BAD=∠CAD= SKIPIF 1 < 0 .…………… 1分
∵AM平分∠EAC,
∴∠EAM=∠MAC= SKIPIF 1 < 0 .…………… 2分
∴∠MAD=∠MAC+∠DAC= SKIPIF 1 < 0 = SKIPIF 1 < 0 。
∵AD⊥BC
∴ SKIPIF 1 < 0
∴∠MAD+ SKIPIF 1 < 0
∴AM∥BC.。…………… 3分
(2)△ADN是等腰直角三角形…………… 4分
理由是:∵AM∥AD
∴∠AND=∠NDC,
∵DN平分∠ADC,
∴∠ADN=∠NDC=∠AND.
∴AD=AN.…………… 6分
∴△ADN是等腰直角三角形.
38.(市丰台区初二期末)如图,△ABC中,∠ACB=90°,AC=BC.在△ABC外侧作直线CP,点A关于直线CP的对称点为D,连接AD,BD,其中BD交直线CP于点E.
A
B
C
P
B
C
A
P
图1 图2
(1)如图1,∠ACP=15°.
①依题意补全图形;
②求∠CBD的度数;
(2)如图2,若45°
相关试卷
这是一份2022年中考数学一轮复习习题精选《整式》(含答案),共11页。试卷主要包含了下列计算正确的是,下列运算正确的是,下列各式计算正确的是,下列计算中,正确的是,已知, ………4分,5分等内容,欢迎下载使用。
这是一份2022年中考数学一轮复习习题精选《直角三角形、勾股定理》(含答案),共8页。试卷主要包含了7米 B.1等内容,欢迎下载使用。
这是一份2022年中考数学一轮复习习题精选《解直角三角形及其应用》(含答案),共16页。试卷主要包含了约为,请简述你的理由等内容,欢迎下载使用。