北师大版九年级下册5 三角函数的应用图文ppt课件
展开
这是一份北师大版九年级下册5 三角函数的应用图文ppt课件,共19页。PPT课件主要包含了回顾思考,特殊角的三角函数值表,自主学习,小组讨论解决,想一想,当堂检测一,你能解决吗,作业布置,总结反馈,仰角和俯角等内容,欢迎下载使用。
(2)两锐角之间的关系
(1)三边之间的关系
由锐角的三角函数值反求锐角
1.如图,∠D=90°,∠B=30°,∠ACD=45°,BC=4cm,求AD.
2、如图,小明想测量塔CD的高度.他在A处仰望塔顶,测得仰角为30°,再往塔的方向前进50m至B处,测得仰角为60°,那么该塔有多高?(小明的身高忽略不计,结果精确到1m).
3、以小组为单位完成教材P19页做一做
1、建筑物BC上有一旗杆AB,由距BC 40m的D处观察旗杆顶部A的仰角为60°,观察底部B的仰角为45°,求旗杆的高度(精确到0.1m)
2. (2010年长沙)为了缓解长沙市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图).已知路况显示牌BC高度是3m,从侧面D点测得显示牌顶端C点和底端B点的仰角分别是60°和45°.求路况显示牌立杆AB的高度
3.一个人先爬了一段45的山坡300m后,又爬了一段60的山坡200m,恰好到达山顶。你能计算出山的高度吗?
4、要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足50°≤ α ≤75°.现有一个长6m的梯子.问:
(1)使用这个梯子最高可以安全攀上多高的平房?(精确到0.1m)
这个问题归结为: 在Rt△ABC中,已知∠A= 75°,斜边AB=6,求BC的长
角α越大,攀上的高度就越高.
(2)当梯子底端距离墙面2.4m时,梯子与地面所成的角α等于多少(精确到1°)?这时人能否安全使用这个梯子?
这个问题归结为: 在Rt△ABC中,已知AC=2.4m,斜边AB=6, ,求锐角α的度数?
角α是否在50°≤ α ≤75°内
5.如图,为了测量电线杆的高度AB,在离电线杆22.7米的C处,用高1.20米的测角仪CD测得电线杆顶端B的仰角a=22°,求电线杆AB的高.(精确到0.1米)
6:热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m,这栋高楼有多高?
7. 如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处,这时,海轮所在的B处距离灯塔P有多远? (精确到0.01海里)
8.海中有一个小岛A,它的周围8海里范围内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?
9、如图,在小岛上有一观察站A.据测,灯塔B在观察站A北偏西450的方向,灯塔C在B正东方向,且相距10海里,灯塔C与观察站A相距10 海里,请你测算灯塔C处在观察站A的什么方向?
1、P21页习题1.62、训练案
1.在解直角三角形及应用时经常接触到的一些概念(仰角,俯角;方位角等) 2.实际问题向数学模型的转化 (解直角三角形)
在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.
相关课件
这是一份初中数学北师大版九年级下册第一章 直角三角形的边角关系5 三角函数的应用授课ppt课件,共18页。PPT课件主要包含了引入新课,探究新知,巩固练习,达标检测,小结与反思,布置作业等内容,欢迎下载使用。
这是一份初中数学5 三角函数的应用课文课件ppt,文件包含15三角函数的应用pptx、15三角函数的应用第2课时三角函数的应用2doc、15三角函数的应用第1课时三角函数的应用1doc等3份课件配套教学资源,其中PPT共19页, 欢迎下载使用。
这是一份初中北师大版第一章 直角三角形的边角关系5 三角函数的应用多媒体教学课件ppt,共28页。PPT课件主要包含了教学目标,教学重点,教学难点,情景导入,《泰坦尼克号》,获取新知,北偏东30°,南偏西45°,射线OA,射线OE等内容,欢迎下载使用。