初中数学北师大版九年级下册4 解直角三角形教学ppt课件
展开(1) 三边之间的关系:a2+b2=_____;
(2)锐角之间的关系:∠A+∠B=_____;
(3)边角之间的关系:sinA=_____,csA=_____,tanA=_____.
在Rt△ABC中,共有六个元素(三条边,三个角),其中∠C=90°,那么其余五个元素之间有怎样的关系呢?
问题1 如果已知Rt△ABC中两边的长,你能求出这个三角形其他的元素吗?
例1 如图,在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,且 ,求这个直角三角形的其他元素.
解:在Rt△ABC中,a2+b2=c2,
在如图的Rt△ABC中,根据AC=,斜边AB=6,你能求出这个直角三角形的其他元素吗?
问题2 如果已知Rt△ABC中一边和一锐角,你能求出这个三角形其他的元素吗?
例2 如图,在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,且b=30,∠B=25°,求这个直角三角形的其他元素(边长精确到1).
在Rt△ABC中,∠C=90°,∠B=25°,
在图中的Rt△ABC中,根据∠A=75°,斜边AB=6,你能求出这个直角三角形的其他元素吗?
事实上,在直角三角形的六个元素中,除直角外,如果再知道两个元素(其中至少有一个是边),这个三角形就可以确定下来,这样就可以由已知的两个元素求出其余的三个元素.
由直角三角形中已知的元素,求出所有未知元素的过程,叫做解直角三角形.
例3 如图,在△ABC中,∠B=30°,∠C=45°,AC=2,求BC.
解:过点 A作 AD⊥BC于D.在△ACD中,∠C=45°,AC=2,∴CD=AD=sinC·AC=2sin45°= .在△ABD中,∠B=30°,∴BD=∴BC=CD+BD= +
如图,在菱形ABCD中,AE⊥BC于点E,EC=4, sinB= ,则菱形的周长是( ) A.10 B.20 C.40 D.28
1.如图,在Rt△ABC中,∠C=90°,∠B=30°, AB=8,则BC的长是( )
2.在△ABC中,AB=AC=3,BC=4,则csB 的值是_________.
4.在Rt△ABC中,∠C=90°,根据下列条件解直角三角形;(1)a = 30 , b = 20 ;
(2) ∠B=72°,c = 14.
5. 如图,在Rt△ABC中,∠C=90°,AC=6, ∠BAC的平分线 ,解这个直角三角形.
6. 如图,在Rt△ABC 中,∠C=90°,csA = , BC = 5, 试求AB的长.
7. 如图,某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为多少米?
解:如图所示,依题意可知,当∠B=600 时,
当△ABC为锐角三角形时,如图②,BC=BD+CD=12+5=17.
当△ABC为钝角三角形时,如图①,
∵AC=13,∴由勾股定理得CD=5
∴BC=BD-CD=12-5=7;
∴BC的长为7或17.
当三角形的形状不确定时,一定要注意分类讨论.
解法:只要知道五个元素中的两个元素(至少有一个是边),就可以求出余下的三个未知元素
北师大版4 解直角三角形课前预习课件ppt: 这是一份北师大版<a href="/sx/tb_c102695_t3/?tag_id=26" target="_blank">4 解直角三角形课前预习课件ppt</a>,共25页。PPT课件主要包含了课时导入,感悟新知,需求的未知元素,方法一,方法二,基础巩固,随堂练习,综合应用等内容,欢迎下载使用。
初中数学北师大版九年级下册4 解直角三角形多媒体教学ppt课件: 这是一份初中数学北师大版九年级下册4 解直角三角形多媒体教学ppt课件,共25页。PPT课件主要包含了复习回顾,讲授新课,巩固练习,探究拓展,布置作业等内容,欢迎下载使用。
数学九年级下册4 解直角三角形教学ppt课件: 这是一份数学九年级下册4 解直角三角形教学ppt课件,文件包含北师大版初中数学九年级下册14解直角三角形同步课件pptx、北师大版初中数学九年级下册14解直角三角形教学设计含教学反思docx等2份课件配套教学资源,其中PPT共31页, 欢迎下载使用。