所属成套资源:高考数学(文)一轮复习课时规范练含解析北师大版专题
高考数学一轮复习第八章平面解析几何第三节圆的方程课时规范练含解析文北师大版
展开
这是一份高考数学一轮复习第八章平面解析几何第三节圆的方程课时规范练含解析文北师大版,共6页。试卷主要包含了以线段AB等内容,欢迎下载使用。
第八章 平面解析几何第三节 圆的方程课时规范练A组——基础对点练1.以线段AB:x+y-2=0(0≤x≤2)为直径的圆的方程为( )A.(x+1)2+(y+1)2=2B.(x-1)2+(y-1)2=2C.(x+1)2+(y+1)2=8D.(x-1)2+(y-1)2=8解析:由题意知,直径的两端点分别为(0,2),(2,0),所以圆心为(1,1),半径为.故圆的方程为(x-1)2+(y-1)2=2.答案:B2.已知a∈R,若方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则此圆的圆心坐标为( )A.(-2,-4) B.C.(-2,-4)或 D.不确定答案:A3.(2020·太原模拟)两条直线y=x+2a,y=2x+a的交点P在圆(x-1)2+(y-1)2=4的内部,则实数a的取值范围是( )A.B.∪(1,+∞)C.D.∪[1,+∞)解析:联立解得P(a,3a),因为点P在圆内,所以(a-1)2+(3a-1)2<4,所以-<a<1.答案:A4.以点(2,-1)为圆心且与直线3x-4y+5=0相切的圆的方程为( )A.(x-2)2+(y+1)2=3B.(x+2)2+(y-1)2=3C.(x-2)2+(y+1)2=9D.(x+2)2+(y-1)2=9解析:因为圆心(2,-1)到直线3x-4y+5=0的距离d==3,所以圆的半径为3,即圆的方程为(x-2)2+(y+1)2=9.答案:C5.一个圆经过点(0,1),(0,-1)和(2,0),且圆心在x轴的正半轴上,则该圆的标准方程为( )A.(x-)2+y2= B.(x+)2+y2=C.(x-)2+y2= D.(x-)2+y2=解析:由题意可得圆经过点(0,1),(0,-1)和(2,0),设圆的方程为(x-a)2+y2=r2(a>0),则,解得a=,r2=,则该圆的标准方程为(x-)2+y2=.答案:C6.(2020·贵阳监测)经过三点A(-1,0),B(3,0),C(1,2)的圆的面积S=( )A.π B.2πC.3π D.4π解析:设圆的方程为x2+y2+Dx+Ey+F=0,将A(-1,0),B(3,0),C(1,2)的坐标代入圆的方程可得解得D=-2,E=0,F=-3,所以圆的方程为(x-1)2+y2=4,所以圆的半径r=2,所以S=4π.故选D.答案:D7.(2020·河南六校联考)圆(x-2)2+y2=4关于直线y=x对称的圆的方程是( )A.(x-)2+(y-1)2=4B.(x-1)2+(y-)2=4C.x2+(y-2)2=4D.(x-)2+(y-)2=4解析:设圆(x-2)2+y2=4的圆心关于直线y=x对称的点的坐标为A(a,b),则∴a=1,b=,∴A(1,),从而所求圆的方程为(x-1)2+(y-)2=4.故选B.答案:B8.已知方程x2+y2-2x+2y+F=0表示半径为2的圆,则实数F=________.解析:方程x2+y2-2x+2y+F=0可化为(x-1)2+(y+1)2=2-F,因为方程x2+y2-2x+2y+F=0表示半径为2的圆,所以F=-2.答案:-29.已知圆C的圆心在x轴上,并且经过点A(-1,1),B(1,3),若M(m,)在圆C内,则m的取值范围为________.解析:设圆心为C(a,0),由|CA|=|CB|,得(a+1)2+12=(a-1)2+32,解得a=2.半径r=|CA|==.故圆C的方程为(x-2)2+y2=10.由题意知(m-2)2+()2<10,解得0<m<4.答案:(0,4)10.已知直角三角形ABC的斜边为AB,且A(-1,0),B(3,0),则直角顶点C的轨迹方程为________.解析:设顶点C(x,y),因为AC⊥BC,且A,B,C三点不共线,所以x≠3且x≠-1.又因为kAC=,kBC=且kAC·kBC=-1,所以·=-1,化简得x2+y2-2x-3=0.因此,直角顶点C的轨迹方程为x2+y2-2x-3=0(x≠3且x≠-1).答案:x2+y2-2x-3=0(x≠3且x≠-1)B组——素养提升练11.(2020·广西南宁联考)在平面直角坐标系xOy中,已知(x1-2)2+y=5,x2-2y2+4=0,则(x1-x2)2+(y1-y2)2的最小值为( )A. B.C. D.解析:由已知得点(x1,y1)在圆(x-2)2+y2=5上,点(x2,y2)在直线x-2y+4=0上,故(x1-x2)2+(y1-y2)2表示圆(x-2)2+y2=5上的点和直线x-2y+4=0上点的距离平方,而距离的最小值为-=,故(x1-x2)2+(y1-y2)2的最小值为.故选B.答案:B12.已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最大值为( )A.7 B.6C.5 D.4解析:根据题意,画出示意图,如图所示,则圆心C的坐标为(3,4),半径r=1,且|AB|=2m,因为∠APB=90°,连接OP,易知|OP|=|AB|=m.要求m的最大值,即求圆C上的点P到原点O的最大距离.因为|OC|==5,所以|OP|max=|OC|+r=6,即m的最大值为6.答案:B13.(2020·泰安市模拟)已知对于圆x2+(y-1)2=1上任一点P(x,y),不等式x+y+m≥0恒成立,则实数m的取值范围为________.解析:因为x+y+m=0右上方的点满足:x+y+m>0,结合图像知,要使圆上的任一点的坐标都满足x+y+m≥0,只需直线在如图所示的切线的左下方(含切线),图中切线的纵截距-m=-+1,故只需-m≤-+1,即m≥-1即可.答案:[-1,+∞)14.(2020·贵阳市一模)由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为________.解析:设直线上一点为P,切点为Q,圆心为M,则|PQ|即切线长,MQ为圆M的半径,长度为1,|PQ|==.要使|PQ|最小,即求|PM|的最小值,此题转化为求直线y=x+1上的点到圆心M的最小距离.设圆心到直线y=x+1的距离为d,则d==2.所以|PM|的最小值为2.所以|PQ|=≥=.答案:15.(2020·聊城模拟)已知M(m,n)为圆C:x2+y2-4x-14y+45=0上任意一点.(1)求m+2n的最大值;(2)求的最大值和最小值.解析:(1)因为x2+y2-4x-14y+45=0的圆心C(2,7),半径r=2,设m+2n=t,将m+2n=t看成直线方程,因为该直线与圆有公共点,所以圆心到直线的距离d=≤2,解上式得:16-2≤t≤16+2,所以,所求的最大值为16+2.(2)记点Q(-2,3).因为表示直线MQ的斜率,设直线MQ的方程为y-3=k(x+2),即kx-y+2k+3=0,则=k.由直线MQ与圆C有公共点,所以≤2.可得2-≤k≤2+,所以的最大值为2+,最小值为2-.16.已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=4.(1)求直线CD的方程;(2)求圆P的方程.解析:(1)由已知得直线AB的斜率k=1,AB的中点坐标为(1,2),则直线CD的方程为y-2=-(x-1),即x+y-3=0.(2)设圆心P(a,b),则由点P在直线CD上得a+b-3=0.①又∵直径|CD|=4,∴|PA|=2,∴(a+1)2+b2=40.②由①②解得或∴圆心为P(-3,6)或P(5,-2),∴圆P的方程为(x+3)2+(y-6)2=40或(x-5)2+(y+2)2=40.
相关试卷
这是一份高考数学一轮复习第八章平面解析几何第四节直线与圆圆与圆的位置关系课时规范练含解析文北师大版,共6页。试卷主要包含了已知点M在圆O,与圆C1,已知圆M,过点P作圆C,已知圆C1,已知直线x-2y+a=0与圆O,若圆C1等内容,欢迎下载使用。
这是一份高考数学一轮复习第八章平面解析几何第七节双曲线课时规范练含解析文北师大版,共5页。试卷主要包含了若双曲线M,设F为双曲线C,已知双曲线C等内容,欢迎下载使用。
这是一份高考数学一轮复习第八章平面解析几何第六节抛物线课时规范练含解析文北师大版,共6页。试卷主要包含了过点P的抛物线的标准方程是,已知点M是抛物线C,抛物线C,设抛物线C等内容,欢迎下载使用。