2022版新高考数学人教版一轮课件:第7章 第3讲 空间点、直线、平面之间的位置关系
展开第三讲 空间点、直线、平面之间的位置关系
1 知识梳理·双基自测
2 考点突破·互动探究
3 名师讲坛·素养提升
知识点一 平面的基本性质公理1:如果一条直线上的_______在一个平面内,那么这条直线在这个平面内.公理2:过_________的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们_______________过该点的公共直线.
知识点二 空间点、直线、平面之间的位置关系
(2)平行公理平行于同一条直线的两条直线_______.(3)等角定理空间中如果两个角的两边分别对应平行,那么这两个角_____________.
异面直线的判定定理过平面内一点与平面外一点的直线和这个平面内不经过该点的直线是异面直线.用符号可表示为:若l⊂α,A∉α,B∈α,B∉l,则直线AB与l是异面直线(如图).
题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.( )(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.( )
(3)如果两个平面有三个公共点,则这两个平面重合.( )(4)经过两条相交直线,有且只有一个平面.( )(5)两两相交的三条直线共面.( )(6)若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线.( )
题组二 走进教材2.(必修2P52B组T1)如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为( )A.30° B.45° C.60° D.90°
[解析] 连接B1D1,D1C,则B1D1∥EF,故∠D1B1C即为所求的角.又B1D1=B1C=D1C,∴△B1D1C为等边三角形,∴∠D1B1C=60°.故选C.
3.(必修2P45例2)如图,在三棱锥A-BCD中,E,F,G,H分别是棱AB,BC,CD,DA上的点,
AC=BD且AC⊥BD
题组三 走向高考4.(2019·新课标Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则( )A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线
(2)∵EG∩FH=P,P∈EG,EG⊂平面ABC,∴P∈平面ABC.同理P∈平面ADC.∴P为平面ABC与平面ADC的公共点.又平面ABC∩平面ADC=AC,∴P∈AC,∴P,A,C三点共线.注:本题(2)可改为:求证GE、HF、AC三线共点.
1.证明空间点共线问题的方法(1)公理法:一般转化为证明这些点是某两个平面的公共点,再根据公理3证明这些点都在这两个平面的交线上.(2)纳入直线法:选择其中两点确定一条直线,然后证明其余点也在该直线上.
2.点、线共面的常用判定方法(1)纳入平面法:先确定一个平面,再证明有关点、线在此平面内.(2)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.3.证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.
〔变式训练1〕如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.
[解析] (1)如图,连接EF,CD1,A1B.因为E,F分别是AB,AA1的中点,所以EF∥A1B.又A1B∥CD1,所以EF∥CD1,所以E,C,D1,F四点共面.
(2)因为EF∥CD1,EF
[解析] (1)如图1,可得a、b、c可能两两垂直;如图2,可得a、b、c可能两两相交;如图3,可得a、b、c可能两两异面;故选B.
(2)因为点A在平面CDD1C1外,点M在平面CDD1C1内,直线CC1在平面CDD1C1内,CC1不过点M,所以AM与CC1是异面直线,故①错;取DD1中点E,连接AE,则BN∥AE,但AE与AM相交,故②错;因为B1与BN都在平面BCC1B1内,M在平面BCC1B1外,BN不过点B1,所以BN与MB1是异面直线,故③正确;同理④正确,故填③④.
1.异面直线的判定方法(1)反证法:先假设两条直线不是异面直线,即两条直线平行或相交,由假设出发,经过严格的推理,导出矛盾,从而否定假设,肯定两条直线异面.此法在异面直线的判定中经常用到.(2)判定定理法:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.
2.判定平行直线的常用方法(1)三角形中位线的性质.(2)平行四边形的对边平行.(3)平行线分线段成比例定理.(4)公理:若a∥b,b∥c,则a∥c.
〔变式训练2〕(1)(2021·甘肃诊断)如图为正方体表面的一种展开图,则图中的AB,CD,EF,GH在原正方体中互为异面直线的有____对.
(2)(多选题)(2021·湘潭调研改编)下图中,G,N,M,H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形是( )
[解析] (1)画出该正方体的直观图如图所示,其中异面直线有(AB,GH),(AB,GD),(GH,EB).故共有3对.故答案为:3.
(2)图A中,直线GH∥MN;图B中,G,H,N三点共面,但M∉平面GHN,N∉HG,因此直线GH与MN异面;图C中,连接MG,GM∥HN,因此GH与MN共面;图D中,G、M、N共面,但H∉平面GMN,G∉MN因此GH与MN异面,故选B、D.
[解析] (1)解法一:(平移法)如图,连接BE,BF、D1F,由题意知BED1F为平行四边形,∴D1E∥BF,∴异面直线D1E与A1F所成角为A1F与BF所成锐角,即∠A1FB,连接A1B,设AB=2,
[引申1]本例(2)中MN与BD所成角的余弦值为_____.
[引申2]本例(3)中与异面直线a、b所成角都为75°的直线有____条.
求异面直线所成角的方法1.平移法(1)一作:根据定义作平行线,作出异面直线所成的角.(2)二证:证明作出的角是异面直线所成的角.(3)三求:解三角形,求出所作的角.注:①为便于作出异面直线所成角,可用补形法,如将三棱柱补成四棱柱;②注意余弦定理的应用.
(2)(2021·黑龙江师大附中期中)直三棱柱ABC-A1B1C1中,AB⊥AC,AB=AC=AA1,则直线A1B与AC1所成角的大小为( )A.30° B.60° C.90° D.120°
作出截面的关键是找到截线,作出截线的主要根据有:(1)确定平面的条件;(2)三线共点的条件;(3)面面平行的性质定理.
〔变式训练4〕(多选题)(2021·百师联盟联考)正方体ABCD-A1B1C1D1的棱长为2,用一个平面α截这个正方体,把该正方体分为体积相等的两部分,则下列结论正确的是( )A.这两部分的表面积也相等B.截面可以是三角形C.截面可以是五边形D.截面可以是正六边形
[解析] 平面α截这个正方体,把该正方体分为体积相等的两部分,则平面α一定过正方体的中心,所以这两部分的表面积也相等,根据对称性,截面不会是三角形、五边形,但可以是正六边形(如图).故选AD.
2024高考数学基础知识综合复习第20讲空间点直线平面之间的位置关系课件: 这是一份2024高考数学基础知识综合复习第20讲空间点直线平面之间的位置关系课件,共31页。PPT课件主要包含了课标导引·定锚点,知识研析·固基础,问题详解·释疑惑,ACD,典例4,典例5,ABD等内容,欢迎下载使用。
新高考数学一轮复习讲练测课件第7章§7.3空间点、直线、平面之间的位置关系 (含解析): 这是一份新高考数学一轮复习讲练测课件第7章§7.3空间点、直线、平面之间的位置关系 (含解析),共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,不在一条直线上,两个点,共面直线,a∩α=A,a∥α,a⊂α,α∥β等内容,欢迎下载使用。
高考数学(理)一轮复习课件+讲义 第8章 第3讲 空间点、直线、平面之间的位置关系: 这是一份高考数学(理)一轮复习课件+讲义 第8章 第3讲 空间点、直线、平面之间的位置关系,文件包含高考数学理一轮复习课件第8章第3讲空间点直线平面之间的位置关系pptx、高考数学理一轮复习讲义第8章第3讲空间点直线平面之间的位置关系doc等2份课件配套教学资源,其中PPT共52页, 欢迎下载使用。