专题14 图形变换和类比探究类几何压轴综合问题-版突破中考数学压轴之学霸秘笈大揭秘(学生版)
展开
这是一份专题14 图形变换和类比探究类几何压轴综合问题-版突破中考数学压轴之学霸秘笈大揭秘(学生版),共10页。
【类型综述】
本节内容每年中考都会选择一种变换作为压轴题的背景素材,可以对函数图象进行平移,可以对几何图形进行平移、旋转,考查学生的数学综合应用能力.在选择、填空中也会涉及变换的概念和简单应用.只要抓住全等变换的特点,找到变与不变的量就可以解决问题.预计在2019年中考中仍会在压轴部分渗透变换,但是会有新情境的渗透.
【方法揭秘】
1.平移的性质
(1)平移前后,对应线段平行、对应角相等;
(2)各对应点所连接的线段平行(或在同一直线上)或相等;
(3)平移前后的图形全等,注意:平移不改变图形的形状和大小.
2.旋转的性质:
(1)对应点到旋转中心的距离相等;
(2)每对对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前后的图形全等.
3.中心对称的性质:
在成中心对称的两个图形中,对应点的连线都经过对称中心,并且被对称中心平分_.成中心对称的两个图形全等.
【典例分析】
例1.如图.小明将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得,.在进行如下操作时遇到了下面的几个问题,请你帮助解决.
(1)将的顶点移到矩形的顶点处,再将三角形绕点顺时针旋转使点落在边上,此时,恰好经过点(如图),请你求出和的长度;
(2)在(1)的条件下,小明先将三角形的边和矩形边重合,然后将沿直线向右平移,至点与重合时停止.在平移过程中,设点平移的距离为,两纸片重叠部分面积为,求在平移的整个过程中,与的函数关系式,并求当重叠部分面积为时,平移距离的值(如图).
例2.如图,点E是正方形ABCD中CD边上任意一点,AB=4,以点A为中心,把△ADE顺时针旋转90°得到△AD′F
(1)画出旋转后的图形,求证:点C、B、F三点共线;
(2)AG平分∠EAF交BC于点G.
①如图2,连接EF.若BG:CE=5:6,求△AEF的面积;
②如图3,若BM、DN分别为正方形的两个外角角平分线,交AG、AE的延长线于点M、N.当MM∥DC时,直接写出DN的长.
例3.已知长方形ABCD中,AD=10cm,AB=6cm,点M在边CD上,由C往D运动,速度为1cm/s,运动时间为t秒,将△ADM沿着AM翻折至△AD´M,点D对应点为D´,AD´所在直线与边BC交于点P.
(1)如图1,当t=0时,求证:PA=PC;
(2)如图2,当t为何值时,点D´恰好落在边BC上;
(3)如图3,当t=3时,求CP的长.
(
例4.如图(1),OABC 是一张放在平面直角坐标系中的矩形纸片,O 为坐标原点,点 A 在 x 轴的正半轴上,点 C 在 y 轴的正半轴上,OA=5,OC=4,在OC 边上取一点 D,将将纸片沿 AD 翻转,使点 O 落在 BC 边上的点 E 处.
(1)求 D、E 两点的坐标;
(2)如图(2),若 AE 上有一动点 P(不与 A,E 重合),自点 A 沿 AE 方向向点E 做匀速运动,运动的速度为每秒 1 个单位长度,设运动时间为 t 秒,过点 P作 ED 的平行线交 AD 于点 M,过点 M 作 AE 平行线交 DE 于点 N.求四边形PMNE 的面积 S 与时间 t 之间的函数关系式;当 t 取何值时,s 有最大值,最大值是多少?
(3)请探究:在(2)的条件下,当 t 为何值时,以 A,M,E 为顶点的三角形是等腰三角形?
例5如图,抛物线l:y=(x﹣h)2﹣2与x轴交于A,B两点(点A在点B的左侧),将抛物线ι在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数ƒ的图象.
(1)若点A的坐标为(1,0).
①求抛物线l的表达式,并直接写出当x为何值时,函数ƒ的值y随x的增大而增大;
②如图2,若过A点的直线交函数ƒ的图象于另外两点P,Q,且S△ABQ=2S△ABP,求点P的坐标;
(2)当2<x<3时,若函数f的值随x的增大而增大,直接写出h的取值范围.
【变式训练】
1.如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,则DN+MN的最小值是( )
A.8 B.9 C.10 D.12
2.如图,矩形ABCD的外接圆O与水平地面有唯一交点A,圆O的半径为4,且=2.若在没有滑动的情况下,将圆O向右滚动,使得O点向右移动了98π,则此时该圆与地面交点在( )上.[来源:Z&X&X&K]
[来源:Z#X#X#K]
A. B. C. D.
3.如图,在Rt△ABC中,∠B=45°,AB=AC,点D为BC中点,直角∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正确结论是( )
A.①②④ B.②③④ C.①②③ D.①②③④
4.如图,矩形ABCD中,AB=3,AD=,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM=( )
A. B.1 C. D.
5.在平面直角坐标系中,按如图方式放置(直角顶点为A),已知A(2,0),B(0,4),点C在双曲线(x>0)上,且AC=,将沿x轴正方向向右平移,当点B落在该双曲线上时,点A的横坐标变成( )
A.3 B.4 C.5 D.6
6.如图,中,,,,以斜边的中点为旋转中心,把这个三角形按逆时针方向旋转得到,则旋转后两个直角三角形重叠部分的面积为( )
A. B. C. D.
7.如图,在Rt△ABC中,∠ACB = 90°,BC = 3,AC = 4,点D为边AB上一点.将△BCD沿直线CD翻折,点B落在点E处,联结AE.如果AE // CD,那么BE =________.
8.如图,在平面直角坐标系中,将绕点顺时针旋转到的位置,点、分别落在点、处,点在轴上,再将绕点顺时针旋转到的位置,点在轴上,将绕点顺时针旋转到的位置,点在轴上,依次进行下去….若点,,则点的坐标为___.
9.如图,正方形ABCD中,AB=3cm,以B为圆心,1cm为半径画圆,点P是⊙B上一个动点,连接AP,并将AP绕点A逆时针旋转90°至AP',连接BP',在点P移动的过程中,BP'长度的取值范围是_____cm.
10.如图,在锐角三角形ABC中,BC=6,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是_____.
11.如图1,四边形ABCD是正方形,点E是AB边的中点,以AE为边作正方形AEFG,连接DE,BG.
(1)发现
①线段DE、BG之间的数量关系是 ;
②直线DE、BG之间的位置关系是 .
(2)探究
如图2,将正方形AEFG绕点A逆时针旋转,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)应用
如图3,将正方形AEFG绕点A逆时针旋转一周,记直线DE与BG的交点为P,若AB=4,请直接写出点P到CD所在直线距离的最大值和最小值.
12.(1)如图1,△AEC中,∠E=90°,将△AEC绕点A顺时针旋转60°得到△ADB,AC与AB对应,AE与AD对应
①请证明△ABC为等边三角形;
②如图2,BD所在的直线为b,分别过点A、C作直线b的平行线a、c,直线a、b之间的距离为2,直线a、c之间的距离为7,则等边△ABC的边长为 .
(2)如图3,∠POQ=60°,△ABC为等边三角形,点A为∠POQ内部一点,点B、C分别在射线OQ、OP上,AE⊥OP于E,OE=5,AE=2,求△ABC的边长.
13.四边形是边长为的正方形,点在边上,矩形的边,.
(1)如图①,求的长;
(2)如图②,将矩形绕点顺时针旋转(),得到矩形,点恰好在上.
①求的度数;
②求的长;
(3)若将矩形绕点顺时针旋转,得到矩形,此时点在矩形的内部、外部,还是边上?(直接写出答案即可)
14.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.
(1)如图1,求证:△CDE是等边三角形.
(2)设OD=t,
①当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.
②求t为何值时,△DEB是直角三角形(直接写出结果即可).
15.如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,BC=5,CD=6,∠DCB=60°,等边△PMN(N为固定点)的边长为x,边MN在直线BC上,NC=8.将直角梯形ABCD绕点C按逆时针方向旋转到①的位置,再绕点D1按逆时针方向旋转到②的位置,如此旋转下去.
(1)将直角梯形按此方法旋转四次,如果等边△PMN的边长为x≥5+3,求梯形与等边三角形的重叠部分的面积;
(2)将直角梯形按此方法旋转三次,如果梯形与等边三角形的重叠部分的面积是,求等边△PMN的边长x的范围.
(3)将直角梯形按此方法旋转三次,如果梯形与等边三角形的重叠部分的面积是梯形面积的一半,求等边△PMN的边长x.
16.如图,一只蚂蚁要从正方体的一个顶点A沿表面爬行到顶点B,怎样爬行路线最短?如果要爬行到顶点C呢?请完成下列问题:
(1)第二个图是将立方体表面展开的一部分,请将图形补充完整;(画一种即可)
(2)在第二个图中画出点A到点B的最短爬行路线;
(3)在第二个图中标出点C,并画出A、C两点的最短爬行路线(画一种即可).
17.(1)如图1,△ABC中,∠BAC=90°,AB=AC,D,E在BC上,∠DAE=45°,为了探究BD,DE,CE之间的等量关系,现将△AEC绕A顺时针旋转90°后成△AFB,连接DF,经探究,你所得到的BD,DE,CE之间的等量关系式是 ;(无须证明)
(2)如图2,在△ABC中,∠BAC=120°,AB=AC,D,E在BC上,∠DAE=60°,∠ADE=45°,试仿照(1)的方法,利用图形的旋转变换,探究BD,DE,CE之间的等量关系,并证明你的结论.
18.如图,在△ABC中,BC=10,BC边上的高为3.将点A绕点B逆时针旋转90°得到点E,绕点C顺时针旋转90°得到点D.沿BC翻折得到点F,从而得到一个凸五边形BFCDE,则五边形BFCDE的面积为_____.
19.已知△ABC是等边三角形,将一块含有30°角的直角三角尺DEF按如图所示放置,让三角尺在BC所在的直线上向右平移.如图①,当点E与点B重合时,点A恰好落在三角尺的斜边DF上.
(1)利用图①证明:EF=2BC.
(2)在三角尺的平移过程中,在图②中线段AH=BE是否始终成立(假定AB,AC与三角尺的斜边的交点分别为G,H)?如果成立,请证明;如果不成立,请说明理由.
20.如图①,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,抛物线的顶点为点D,且3OC=4OB,对称轴为直线x=,点E,连接CE交对称轴于点F,连接AF交抛物线于点G.
(1)求抛物线的解析式和直线CE的解析式;
(2)如图②,过E作EP⊥x轴交抛物线于点P,点Q是线段BC上一动点,当QG+QB最小时,线段MN在线段CE上移动,点M在点N上方,且MN=,请求出四边形PQMN周长最小时点N的横坐标;
(3)如图③,BC与对称轴交于点R,连接BD,点S是线段BD上一动点,将△DRS沿直线RS折叠至△D′RS,是否存在点S使得△D′RS与△BRS重叠部分的图形是直角三角形?若存在,请求出BS的长,若不存在,请说明理由.(参考数据:tan∠DBC=)
相关试卷
这是一份专题04 因动点产生的相似、全等问题版突破中考数学压轴之学霸秘笈大揭秘(学生版),共12页。
这是一份专题01 因动点产生的面积问题-版突破中考数学压轴之学霸秘笈大揭秘(学生版),共12页。
这是一份专题11 图形运动中的有关函数关系问题 -版突破中考数学压轴之学霸秘笈大揭秘(学生版),共13页。