专题01 因动点产生的面积问题-版突破中考数学压轴之学霸秘笈大揭秘(学生版)
展开
这是一份专题01 因动点产生的面积问题-版突破中考数学压轴之学霸秘笈大揭秘(学生版),共12页。
面积是平面几何中一个重要的概念,关联着平面图形中的重要元素边与角,由动点而生成的面积问题,是抛物线与直线形结合的觉形式,常见的面积问题有规则的图形的面积(如直角三角形、平行四边形、菱形、矩形的面积计算问题)以及不规则的图形的面积计算,解决不规则的图形的面积问题是中考压轴题常考的题型,此类问题计算量较大。有时也要根据题目的动点问题产生解的不确定性或多样性。解决这类问题常用到以下与面积相关的知识:图形的割补、等积变形、等比转化等数学方法. 面积的存在性问题常见的题型和解题策略有两类:一是先根据几何法确定存在性,再列方程求解,后检验方程的根.二是先假设关系存在,再列方程,后根据方程的解验证假设是否正确.
【方法揭秘】
解决动点产生的面积问题,常用到的知识和方法,如下:
如图1,如果三角形的某一条边与坐标轴平行,计算这样“规则”的三角形的面积,直接用面积公式.
如图2,图3,三角形的三条边没有与坐标轴平行的,计算这样“不规则”的三角形的面积,用“割”或“补”的方法.
图1 图2 图3
计算面积长用到的策略还有:
如图4,同底等高三角形的面积相等.平行线间的距离处处相等.
如图5,同底三角形的面积比等于高的比.
如图6,同高三角形的面积比等于底的比.
图4 图5 图6
【典例分析】
例1 如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-1, 0),B(4, 0)两点,与y轴交于点C(0, 2).点M(m, n)是抛物线上一动点,位于对称轴的左侧,并且不在坐标轴上.过点M作x轴的平行线交y轴于点Q,交抛物线于另一点E,直线BM交y轴于点F.
(1)求抛物线的解析式,并写出其顶点坐标;
(2)当S△MFQ∶S△MEB=1∶3时,求点M的坐标.
例2如图,已知抛物线与坐标轴分别交于点、和点,动点从原点开始沿方向以每秒个单位长度移动,动点从点开始沿方向以每秒个单位长度移动,动点、同时出发,当动点到达原点时,点、停止运动.
直接写出抛物线的解析式:________;
求的面积与点运动时间的函数解析式;当为何值时,的面积最大?最大面积是多少?
当的面积最大时,在抛物线上是否存在点(点除外),使的面积等于的最大面积?若存在,求出点的坐标;若不存在,请说明理由.[来源:Z,X,X,K]
例3如图,在平面直角坐标系中,直线与抛物线y=ax2+bx-3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上的一动点(不与点A、B重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.
(1)求a、b及sin∠ACP的值;
(2)设点P的横坐标为m.
①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;
②连结PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积比为9∶10?若存在,直接写出m的值;若不存在,请说明理由.
例4如图,已知二次函数的图象过点O(0,0)、A(4,0)、B(),M是OA的中点.
(1)求此二次函数的解析式;
(2)设P是抛物线上的一点,过P作x轴的平行线与抛物线交于另一点Q,要使四边形PQAM是菱形,求点P的坐标;
(3)将抛物线在轴下方的部分沿轴向上翻折,得曲线OB′A(B′为B关于x轴的对称点),在原抛物线x轴的上方部分取一点C,连结CM,CM与翻折后的曲线OB′A交于点D,若△CDA的面积是△MDA面积的2倍,这样的点C是否存在?若存在求出点C的坐标;若不存在,请说明理由.
例5如图,直线l经过点A(1,0),且与双曲线(x>0)交于点B(2,1).过点(p>1)作x轴的平行线分别交曲线(x>0)和(x<0)于M、N两点.
(1)求m的值及直线l的解析式;
(2)若点P在直线y=2上,求证:△PMB∽△PNA;
(3)是否存在实数p,使得S△AMN=4S△AMP?若存在,请求出所有满足条件的p的值;若不存在,请说明理由.
例6 如图1,在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.
(1)求线段AD的长;
(2)若EF⊥AB,当点E在斜边AB上移动时,
①求y与x的函数关系式(写出自变量x的取值范围);[来源:Z。xx。k.Cm]
②当x取何值时,y有最大值?并求出最大值.
(3)若点F在直角边AC上(点F与A、C不重合),点E在斜边AB上移动,试问,是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.
图1 备用图
【变式训练】
1.如图,点A是直线y=﹣x上的动点,点B是x轴上的动点,若AB=2,则△AOB面积的最大值为( )
A.2 B.+1 C.-1 D.2
2.如图,已知,以为圆心,长为半径作,是上一个动点,直线交轴于点,则面积的最大值是( )
A. B. C. D.
3.如图,在中,,,,动点从点开始沿向点以的速度移动,动点从点开始沿向点以的速度移动.若,两点分别从,两点同时出发,点到达点运动停止,则的面积随出发时间的函数关系图象大致是( )
A. B. C. D.
4.如图,在中,,,,动点P从点B开始沿边BA、AC向点C以的速度移动,动点Q从点B开始沿边BC向点C以的速度移动,设的面积为运动时间为,则下列图象能反映y与x之间关系的是
A. B.
C. D.
5.如图,在正方形中,,动点自点出发沿方向以每秒的速度运动,同时动点自点出发沿折线以每秒的速度运动,到达点时运动同时停止,设的面积为,运动时间为(秒),则下列图象中能大致反映与之间的函数关系的是( )
A. B. C. D.
6.如图,在矩形中,,,点是边上的动点(点不与点,点重合),过点作直线,交边于点,再把沿着动直线对折,点的对应点是点,设的长度为,与矩形重叠部分的面积为.
(1)求的度数;
(2)当取何值时,点落在矩形的边上?
(3)①求与之间的函数关系式;
②当取何值时,重叠部分的面积等于矩形面积的?
7.已知直角梯形OABC在如图所示的平面直角坐标系中,AB∥OC,AB=10,OC=22,BC=15,动点M从A点出发,以每秒一个单位长度的速度沿AB向点B运动,同时动点N从C点出发,以每秒2个单位长度的速度沿CO向O点运动。当其中一个动点运动到终点时,两个动点都停止运动。
(1)求B点坐标;
(2)设运动时间为t秒。
①当t为何值时,四边形OAMN的面积是梯形OABC面积的一半;
②当t为何值时,四边形OAMN的面积最小,并求出最小面积。
③若另有一动点P,在点M、N运动的同时,也从点A出发沿AO运动。在②的条件下,PM+PN的长度也刚好最小,求动点P的速度。
8.如图,在中,,,,动点从点开始沿着边向点以的速度移动(不与点重合),动点从点开始沿着边向点以的速度移动(不与点重合).若、两点同时移动;
当移动几秒时,的面积为.
设四边形的面积为,当移动几秒时,四边形的面积为?
9.如图,已知抛物线y=﹣x2+bx+c与坐标轴分别交于点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动.
(1)直接写出抛物线的解析式: ;
(2)求△CED的面积S与D点运动时间t的函数解析式;当t为何值时,△CED的面积最大?最大面积是多少?
(3)当△CED的面积最大时,在抛物线上是否存在点P(点E除外),使△PCD的面积等于△CED的最大面积?若存在,求出P点的坐标;若不存在,请说明理由.
10.如图,已知抛物线y=﹣x2+bx+c与坐标轴分别交于点点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动.
(1)求该抛物线的解析式及点E的坐标;[来源:Z。xx。k.Cm]
(2)若D点运动的时间为t,△CED的面积为S,求S关于t的函数关系式,并求出△CED的面积的最大值.
11.如图1,抛物线与轴交于两点,与轴交于点,连结AC,若
(1)求抛物线的解析式;
(2)抛物线对称轴上有一动点P,当时,求出点的坐标;
(3)如图2所示,连结,是线段上(不与、重合)的一个动点.过点作直线,交抛物线于点,连结、,设点的横坐标为.当t为何值时,的面积最大?最大面积为多少?
12.在△ABC 中,∠ACB=90°,AC=BC,D 是 AB 的中点,点 E 是边 AC 上的一动点,点F 是边 BC 上的一动点.
(1)若 AE=CF,试证明 DE=DF;
(2)在点 E、点 F 的运动过程中,若 DE⊥DF,试判断 DE 与 DF 是否一定相等? 并加以说明.
(3)在(2)的条件下,若 AC=2,四边形 ECFD 的面积是一个定值吗?若不是, 请说明理由,若是,请直接写出它的面积.
13.如图,在中,已知,,,直线,动点D从点C开始以每秒2cm的速度运动到B点,动点E也同时从点C开始沿射线CM方向以每秒1cm的速度运动.
A
B
D
C
E
M
(1)问运动多少秒时,,并说明理由.
(2)设运动时间为秒,请用含的代数式来表示的面积.
(3)运动多少秒时,与的面积比为3:1.
14.在平面直角坐标系中,平行四边形如图放置,点、的坐标分别是、,将此平行四边形绕点顺时针旋转,得到平行四边形.
如抛物线经过点、、,求此抛物线的解析式;
在情况下,点是第一象限内抛物线上的一动点,问:当点在何处时,的面积最大?最大面积是多少?并求出此时的坐标;
在的情况下,若为抛物线上一动点,为轴上的一动点,点坐标为,当、、、构成以作为一边的平行四边形时,求点的坐标.
15.如图,直线y=﹣x+1与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点.
(1)求抛物线的解析式;
(2)点P是第一象限抛物线上的一点,连接PA、PB、PO,
①若△POA的面积是△POB面积的倍.求点P的坐标;
②当四边形AOBP的面积最大时,求点P的坐标;
(3)点M为直线AB上的动点,点N为抛物线上的动点,当以点O、B、M、N为顶点的四边形是平行四边形时,请直接写出点M的坐标.
16.(2015秋•随州期末)如图,已知抛物线y=ax2+bx+c经过A (1,0)、B(0,3)及C(3,0)点,动点D从原点O开始沿OB方向以每秒1个单位长度移动,动点E从点C开始沿CO方向以每秒1个长度单位移动,动点D、E同时出发,当动点E到达原点O时,点D、E停止运动.
(1)求抛物线的解析式及顶点P的坐标;
(2)若F(﹣1,0),求△DEF的面积S与E点运动时间t的函数解析式;当t为何值时,△DEF的面积最大?最大面积是多少?
(3)当△DEF的面积最大时,抛物线的对称轴上是否存在一点N,使△EBN是直角三角形?若存在,求出N点的坐标,若不存在,请说明理由.
17.如图,抛物线与轴交于点和点,与轴交于点,其对称轴为.
求抛物线的解析式并写出其顶点坐标;
若动点在第二象限内的抛物线上,动点在对称轴上.
①当,且时,求此时点的坐标;
②当四边形的面积最大时,求四边形面积的最大值及此时点的坐标.
18.如图,直线与轴交于点,与轴交于点,抛物线经过、两点.
求抛物线的解析式;
如图,点是直线上方抛物线上的一动点,当面积最大时,请求出点的坐标和面积的最大值?
在的结论下,过点作轴的平行线交直线于点,连接,点是抛物线对称轴上的动点,在抛物线上是否存在点,使得以、、、为顶点的四边形是平行四边形?如果存在,请直接写出点的坐标;如果不存在,请说明理由.
19.如图,抛物线与坐标轴交点分别为,,,作直线BC.
求抛物线的解析式;
点P为抛物线上第一象限内一动点,过点P作轴于点D,设点P的横坐标为,求的面积S与t的函数关系式;
条件同,若与相似,求点P的坐标.
20.如图,已知抛物线过点A(4,0),B(﹣2,0),C(0,﹣4).
(1)求抛物线的解析式;
(2)在图甲中,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标;
(3)在图乙中,点C和点C1关于抛物线的对称轴对称,点P在抛物线上,且∠PAB=∠CAC1,求点P的横坐标.
相关试卷
这是一份专题01 因动点产生的面积问题-版突破中考数学压轴之学霸秘笈大揭秘(教师版),共46页。
这是一份专题14 因动点产生的面积问题-版突破中考数学压轴之学霸秘笈大揭秘 学生版+教师版,文件包含专题14图形变换和类比探究类几何压轴综合问题-版突破中考数学压轴之学霸秘笈大揭秘学生版doc、专题14图形变换和类比探究类几何压轴综合问题-版突破中考数学压轴之学霸秘笈大揭秘教师版doc等2份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。
这是一份专题13 因动点产生的面积问题-版突破中考数学压轴之学霸秘笈大揭秘 学生版+教师版,文件包含专题13几何中的最值与定值问题-版突破中考数学压轴之学霸秘笈大揭秘学生版doc、专题13几何中的最值与定值问题-版突破中考数学压轴之学霸秘笈大揭秘教师版doc等2份试卷配套教学资源,其中试卷共58页, 欢迎下载使用。