中考复习专题二十一 概率 知识点总结与练习
展开专题二十一 概率
【考点扫描】
1. 事件的分类
(1)确定事件:在一定条件下,有些事件发生与否是可以事先确定,这样的事件叫做确定事件, 其中一定发生的叫做必然事件,不可能发生的叫做不可能事件。
(2)随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件。
2. 概率
(1)在随机现象中,一个事件发生的可能性大小叫做这个事件的概率。
(2)必然事件发生的概率为1,不可能事件发生的概率为0,随机事件发生的概率介于0与1之间。
3. 概率的计算
一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)= 。
4. 用频率估计概率
(1)一般地,在大量重复试验中,如果事件A发生的频率会逐渐稳定在某个常数P附近,那么把这个常数P作为这一事件发生的概率的近似值,事件A的概率记作P(A)= 。
(2)频率与概率的关系:一个事件发生的频率接近于概率,还需有大量的实验次数,只有大量重复试验时的频率,才能作为事件发生的概率的近似值,但不能说频率等于概率,频率是通过试验得到的数据,而概率是理论上事件发生的可能性。
【抛砖引玉】
【例1】下列事件为必然事件的是( )
A.小王参加本次数学考试,成绩是150分
B.某射击运动员射靶一次,正中靶心
C.打开电视机,CCTV第一套节目正在播放新闻
D.口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球
【解析】根据事件的分类的定义及分类对四个选项进行逐一分析即可.A、小王参加本次数学考试,成绩是150分是随机事件,故本选项错误;B、某射击运动员射靶一次,正中靶心是随机事件,故本选项错误;C、打开电视机,CCTV第一套节目正在播放新闻是随机事件,故本选项错误.D、口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球是必然事件,故本选项正确;
答案:D
【例2】如图,有四张背面相同的纸牌A、B、C、D,其正面分别画有正三角形、圆、平行四边形和正五边形.小明将这四张纸牌背面朝上洗匀后随机摸出一张,则摸出的图形是中心对称图形的概率是 .
A B C D
【解析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.共有4张牌,正面是中心对称图形的情况有2种,即B、C,所以摸出的图形是中心对称图形的纸牌的概率是:.
答案:.
【例3】绿豆在相同条件下的发芽试验,结果如下表所示:
每批粒数n | 100 | 300 | 400 | 600 | 1000 | 2000 | 3000 |
发芽的粒数m | 96 | 282 | 382 | 570 | 948 | 1912 | 2850 |
发芽的频数 | 0.960 | 0.940 | 0.955 | 0.950 | 0.948 | 0.956 | 0.950 |
则绿豆发芽的概率估计值是 ( )
A.0.96 B.0.95 C.0.94 D.0.90
【解析】本题考查了绿豆种子发芽的概率的求法.对于不同批次的绿豆种子的发芽率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法.=(0.960+0.940+0.955+0.950+0.948+0.956+0.950)÷7≈0.95,当n足够大时,发芽的频率逐渐稳定于0.95,故用频率估计概率,绿豆发芽的概率估计值是0.95.
答案:B.
【例4】在一个口袋中有4个完全相同的小球,把它们分别标上1、2、3、4.小明先随机地摸出一个小球,小强再随机的摸出一个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时小明获胜,否则小强获胜.
①若小明摸出的球不放回,求小明获胜的概率.
②若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.
【解析】 (1)首先根据题意画出树状图,由树状图求得所有等可能的结果与小明获胜的情况,继而利用概率公式即可求得答案,注意此题属于不放回实验;(2)首先根据题意画出树状图,由树状图求得所有等可能的结果与小明、小强获胜的情况,继而利用概率公式求得其概率,比较概率,则可得到他们制定的游戏规则是否公平,注意此题属于放回实验.
答案:解:(1)画树状图得:
∵共有12种等可能的结果,小明获胜的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共6种情况,∴小明获胜的概率为:;
(2)画树状图得:
∵共有16种等可能的结果,小明获胜的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共6种情况,
∴P(小明获胜)=,
P(小强获胜)=,
∵P(小明获胜)≠P(小强获胜),
∴他们制定的游戏规则不公平.
【沙场点兵】
1. 义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是( )
A. B. C. D.
2. 中考体育男生抽测项目规则是:从立定跳远、实心球、引体向上中随机抽取一项;从50米、50×2米、100米中随机抽取一项.恰好抽中实心球和50米的概率是( )
A. B. C. D.
3. 随意抛一粒豆子,恰好落在如图的方格中(每个方格除颜色外完全一样),那么这粒豆子落在黑色方格中的概率是 .
4.如图,把一个圆形转盘按1:2:3:4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为 .
5.投掷一枚普通的正方体股子24次.
(1)你认为下列四种说法哪种是正确的?
①出现1点的概率等于出现3点的概率;
②投掷24次,2点一定会出现4次;
③投掷前默念几次“出现4点”,投掷结果出现4点的可能性就会加大;
④连续投掷6次,出现的点数之和不可能等于37.
(2)求出现5点的概率;
(3)出现6点大约有多少次?
6.从1名男生和2名女生中随机抽取参加“我爱我家乡”演讲赛的学生,求下列事件的概率:
(1)抽取1名,恰好是男生;
(2)抽取2名,恰好是1名女生和1名男生.
【实战演练】
一.选择题
1.(2017河南)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )
A. B. C. D.
2.(2016乐山)现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是
A. B. C. D.
3.(2016福州)下列说法中,正确的是( )
A.不可能事件发生的概率为0
B.随机事件发生的概率为
C.概率很小的事件不可能发生
D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次
4.(2016沈阳)“射击运动员射击一次,命中靶心”这个事件是( )
A.确定事件 B.必然事件 C.不可能事件 D.不确定事件
二.填空题
1.(2016河南)在“阳光体育”活动时间,班主任将全班同学随机分成了4组进行活动,该班小明和小亮被分别分在同一组的概率是 .
2. (2016天津)不透明袋子中装有6个球,其中有1个红球、2个绿球和3个黑球,这些球除了颜色外无其它差别。从袋子中随机取出1个球,则它是绿球的概率是 。
三.解答题
1.(2012六盘水)假期,六盘水市教育局组织部分教师分别到A、B、C、D四个地方进行新课程培训,教育局按定额购买了前往四地的车票.如图1是未制作完成的车票种类和数量的条形统计图,请根据统计图回答下列问题:
(1)若去C地的车票占全部车票的30%,则去C地的车票数量是 30张,补全统计图.
(2)若教育局采用随机抽取的方式分发车票,每人一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么余老师抽到去B地的概率是多少?
(3)若有一张去A地的车票,张老师和李老师都想要,决定采取旋转转盘的方式来确定.其中甲转盘被分成四等份且标有数字1、2、3、4,乙转盘分成三等份且标有数字7、8、9,如图2所示.具体规定是:同时转动两个转盘,当指针指向的两个数字之和是偶数时,票给李老师,否则票给张老师(指针指在线上重转).试用“列表法”或“树状图”的方法分析这个规定对双方是否公平.
2. (2012黔东南州)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x,小红在剩下的3个小球中随机取出一个小球,记下数字为y.
(1)计算由x、y确定的点(x,y)在函数y=-x+5的图象上的概率.
(2)小明和小红约定做一个游戏,其规则为:若x、y满足xy>6则小明胜,若x、y满足xy<6则小红胜,这个游戏公平吗?说明理由.若不公平,请写出公平的游戏规则.
考点:游戏公平性;一次函数图象上点的坐标特征;列表法与树状图法.
分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点(x,y)在函数y=-x+5的图象上的情况,利用概率公式即可求得答案;
(2)根据(1)求得小明胜与小红胜的概率,比较概率大小,即可确定游戏是否公平,只要概率等则公平,否则不公平.
中考复习专题二 整式 知识点总结与练习: 这是一份中考复习专题二 整式 知识点总结与练习,共6页。
中考复习专题十九 投影与视图 知识点总结与练习: 这是一份中考复习专题十九 投影与视图 知识点总结与练习,共9页。
中考复习专题十五 圆 知识点总结与练习: 这是一份中考复习专题十五 圆 知识点总结与练习,共12页。