数学11.2.2 三角形的外角复习练习题
展开
这是一份数学11.2.2 三角形的外角复习练习题,共10页。试卷主要包含了已知等内容,欢迎下载使用。
人教版2021年八年级上册:11.2.2三角形的外角 课时训练一.选择题1.如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是( )A.110° B.120° C.130° D.140°2.如图,在△ABC中,∠A=45°,△ABC的外角∠CBD=75°,则∠C的度数是( )A.30° B.45° C.60° D.75°3.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于( )A.30° B.40° C.60° D.70°4.如图所示,∠1=∠2=145°,则∠3=( )A.80° B.70° C.60° D.50°5.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=( )A.35° B.95° C.85° D.75°6.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=( )A.70° B.80° C.90° D.100°二.填空题7.如图,根据三角形的有关知识可知图中的x的值是 .8.一副三角板如图放置,若∠1=90°,则∠2的度数为 .9.如图,∠BCD=150°,则∠A+∠B+∠D的度数为 .10.已知:如图,在△ABC中,∠A=55°,H是高BD、CE的交点,则∠BHC= 度.11.将一副直角三角板按如图放置,使两直角重合,则∠1的度数为 .12.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=15°,∠ACP=50°,则∠P= °.三.解答题13.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数. 14.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,∠B=25°,∠E=30°,求∠BAC的度数. 15.如图,△ABC中,∠ABC=∠C=70°,BD平分∠ABC,求∠ADB的度数. 16.已知:如图,△ABC的两个外角的平分线交于点P,如果∠A=40°,求∠BPC的度数. 17.如图,在△ABC中,AD是高,∠DAC=10°,AE是∠BAC外角的平分线,BF平分∠ABC交AE于点F,若∠ABC=46°,求∠AFB的度数. 18.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数. 参考答案一.选择题1.解:由三角形的外角性质的,∠ABD=∠A+∠C=50°+70°=120°.故选:B.2.解:∵∠A=45°,△ABC的外角∠CBD=75°,∴∠C=∠CBD﹣∠A=75°﹣45°=30°,故选:A.3.解:如图,∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故选:A.4.解:∵∠1、∠2、∠3是△ABC的三个外角,∴∠1+∠2+∠3=360°,∵∠1=∠2=145°,∴∠3=360°﹣145°×2=70°,故选:B.5.解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°,故选:C.6.解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM﹣∠ABC=60°,∠ACB=180°﹣∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠PBC=20°,∴∠P=180°﹣∠PBC﹣∠BCP=30°,∴∠A+∠P=90°,故选:C.二.填空题7.解:根据三角形的外角性质得:x+80=x+20+x,解得:x=60,故答案为:60.8.解:由题意得:∠B=30°,∠A=45°,∵∠1=90°,∴∠A+∠3=90°,∴∠3=45°,∴∠4=45°,∵∠B=30°,∴∠2=45°+30°=75°,故答案为:75°.9.解:延长DC交AB于E,∠CEB是△ADE的一个外角,∴∠CEB=∠A+∠D,同理,∠BCD=∠CEB+∠B,∴∠A+∠B+∠D=∠CEB+∠B=∠BCD=150°,故答案为:150°.10.解:在△ABD中,∵BD⊥AC,∴∠ABD=90°﹣∠A=35°,∴∠BHC=90°+35°=125°.11.解:如图,由题意知,∠CAD=60°,∠B=90°﹣45°=45°,∴∠CAB=120°,∴∠1=∠B+∠CAB=45°+120°=165°.故答案为:165°.12.解:∵BP是△ABC中∠ABC的平分线,∠ABP=15°,∴∠CBP=∠ABP=15°,∵CP是∠ACB的外角的平分线,∠ACP=50°,∴∠PCM=∠ACP=50°,∴∠P=∠PCM﹣∠CBP=50°﹣15°=35°,故答案为:35.三.解答题13.解:设∠1=∠2=x,则∠3=∠4=2x.因为∠BAC=63°,所以∠2+∠4=117°,即x+2x=117°,所以x=39°;所以∠3=∠4=78°,∠DAC=180°﹣∠3﹣∠4=24°.14.解:∵∠B=25°,∠E=30°,∴∠ECD=∠B+∠E=55°.∵CE是∠ACD的平分线,∴∠ACE=∠ECD=55°.∴∠BAC=∠ACE+∠E=85°.15.解:∵∠ABC=∠C=70°,BD平分∠ABC,∴∠DBC=35°,∴∠ADB=∠C+∠DBC=70°+35°=105°.16.解:∵∠A=40°,∴∠ABC+∠ACB=180°﹣40°=140°,∴∠EBC+∠FCB=360°﹣140°=220°,∵BP、CP是△ABC的外角平分线,∴∠PBC=∠EBC,∠PCB=∠FCB,∴∠PBC+∠PCB=(∠EBC+∠FCB)=110°,∴∠BPC=180°﹣(∠PBC+∠PCB)=70°.17.解:∵AD是高,∴∠ADB=90°,∴∠BAD=90°﹣∠ABC=44°,又∠DAC=10°,∴∠BAC=54°,∴∠MAC=126°,∵AE是∠BAC外角的平分线,∴∠MAE=∠MAC=63°,∵BF平分∠ABC,∴∠ABF=∠ABC=23°,∴∠AFB=∠MAE﹣∠ABF=40°.18.(1)解:∵∠A=80°.∴∠ABC+∠ACB=100°,∵点P是∠ABC和∠ACB的平分线的交点,∴∠P=180°﹣(∠ABC+∠ACB)=180°﹣×100°=130°,(2)∵外角∠MBC,∠NCB的角平分线交于点Q,∴∠QBC+∠QCB=(∠MBC+∠NCB)=(360°﹣∠ABC﹣∠ACB)=(180°+∠A)=90°+∠A∴∠Q=180°﹣(90°+∠A)=90°﹣∠A;(3)延长BC至F,∵CQ为△ABC的外角∠NCB的角平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠ECF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=∠A;∵∠EBQ=∠EBC+∠CBQ=∠ABC+∠MBC=(∠ABC+∠A+∠ACB)=90°.如果△BQE中,存在一个内角等于另一个内角的2倍,那么分四种情况:①∠EBQ=2∠E=90°,则∠E=45°,∠A=2∠E=90°;②∠EBQ=2∠Q=90°,则∠Q=45°,∠E=45°,∠A=2∠E=90°;③∠Q=2∠E,则90°﹣∠A=∠A,解得∠A=60°;④∠E=2∠Q,则∠A=2(90°﹣∠A),解得∠A=120°.综上所述,∠A的度数是90°或60°或120°.
相关试卷
这是一份初中数学人教版八年级上册11.2.2 三角形的外角一课一练,共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份初中11.2.2 三角形的外角随堂练习题,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学人教版八年级上册第十一章 三角形11.2 与三角形有关的角11.2.2 三角形的外角一课一练,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。