初中数学人教版七年级下册8.3 实际问题与二元一次方程组教案及反思
展开
这是一份初中数学人教版七年级下册8.3 实际问题与二元一次方程组教案及反思,共15页。教案主要包含了温馨提示等内容,欢迎下载使用。
1.列二元一次方程组解应用题的一般步骤
①审:审题,分析题中已知什么,求什么,明确各数量之间的关系;
②设:设未知数(一般求什么,就设什么);
③找:找出应用题中的相等关系;
④列:根据相等关系列出两个方程,组成方程组;
⑤解:解所列的方程组,求出未知数的值;
⑥答:检验所求未知数的值是否符合题意,写出答案(包括单位名称).
【温馨提示】①列方程组解应用题的关键是准确地找出题中的几个相等关系,正确地列出方程组.
②设未知数时可直接设未知数,也可间接设未知数.
③一般来说,设几个未知数,就应列出几个方程并组成方程组.
④“审”和“找”两步可在草稿纸上进行,书面上主要写“设”“列”“解”和“答”四个步骤.
⑤要根据应用题的实际意义检查求得的结果是否合理,不符合题意的解应该舍去.
⑥“设”“答”两步都要写清单位名称.
⑦在列方程组时,要注意等号左、右两边单位的统一.
2.列二元一次方程组应用题的常见类型的基本关系式
(1)和差倍分问题
较大量=较小量+多余量,总量=倍数×一份的量.
(2)产品配套问题
加工总量成比例.
(3)速度问题
路程=速度×时间
(4)航速问题
①顺流(风)速度=静水(无风)中的速度+水(风)速;
②逆流(风)速度=静水(无风)中的速度-水(风)速.
(5)工程问题
工作量=工作效率×工作时间.
(6)增长率问题
原量×(1+增长率)=增长后的量,原量×(1-减少率)=减少后的量.
(7)浓度问题
溶液质量×浓度=溶质质量.
(8)银行利率问题
免税利息=本金×利率×期数,税后利息=本金×利率×期数-本金×利率×期数×税率.
(9)利润问题
利润=售价-进价,利润率=×100%.
(10)盈亏问题
解这类问题关键是从盈(过剩)、亏(不足)两个角度来把握事物的总量.
(11)数字问题
解这类问题,要正确掌握自然数、奇数、偶数等有关的概念、特征及表示.
(12)几何问题
解这类问题要准确掌握有关几何图形的性质和周长、面积等计算公式.
(13)年龄问题
解这类问题的关键是抓住两人年龄的增长数相等这一特征.
一、行程问题
1.相遇问题:甲走的路程+乙走的路程=两地距离.
2.追及问题:同地不同时出发:前者走的路程=追者走的路程;
同时不同地出发:前者走的路程+两地距离=追者走的路程.
【例1】某地地震后,全国各地都有不少人士参与抗震救灾,家住成都的王伟也参加了,他要在规定时间内由成都赶到雅安.如果他以50千米/小时的速度行驶,就会迟到24分钟;如果以75千米/小时的高速行驶,则可提前24分钟到达.若设成都至雅安的路程为S,由成都到雅安的规定时间是t,则可得到方程组是
A.B.
C.D.
二、配套问题
产品配套问题是指某件产品是由几个部件配套加工而成的,而部件的数量并不完全相同,在生产过程中,为了使每个部件生产的数量恰好符合组装所需,而不产生积压.各部件的数量不一定相等,但存在一定数量关系:
【例2】用白铁皮做罐头盒,每张铁皮可制盒身个,或制盒底个,一个盒身与两个盒底配成一套罐头盒,现有张白铁皮,设用张制盒身,张制盒底,恰好配套制成罐头盒,则下列方程组中符合题意的是
A.B.
C.D.
三、几何图形问题
对于图形问题的求解,要会通过对图形的观察比较、分析,发现隐含在图形中的数量关系,这是解决有关图形问题的关键.图形中隐含的数量关系有边长之间的关系、面积之间的关系,等等.
【例3】如图,用10块相同的矩形墙砖并成一个矩形,设矩形墙砖的长和宽分别为x厘米和y厘米,依题意列方程组正确的是
A.B.
C.D.
四、方案问题
优化方案问题先要列举出所有可能的方案,再按题目要求分别求出每种方案的具体结果,进行比较,从中
选择最优.
【例4】已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.
根据以上信息,解答下列问题:
(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?
(2)请你帮该物流公司设计租车方案(即A、B两种型号的车各租几辆,有几种租车方案).
【练习】
1.一副三角尺按如图所示的方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为
A.B.
C.D.
2.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得-2分,不答的题得0分.已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则
A.x-y=20B.x+y=20
C.5x-2y=60D.5x+2y=60
3.已知xb+5y3a和-3x2ay2-4b是同类项,那么a,b的值是
A.B.
C.D.
4.现有190张铁皮做盒子,每张铁皮可做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整的盒子,设用x张铁皮做盒身,y张铁皮做盒底,则可列方程组为
A.B.
C.D.
5.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x,乙数为y,由题意得方程组
A.B.
C.D.
6.甲、乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;如果乙先跑2秒,甲跑4秒就可以追上乙.设甲的速度为x米/秒,乙的速度为y米/秒,根据题意,下列选项中所列方程组正确的是
A.B.
C.D.
7.某公司向银行申请了甲、乙两种贷款共计68万元,每年需付出8.42万元利息,已知甲种贷款每年的利率为12%,乙种贷款每年的利率为13%,则该公司甲、乙两种贷款的数额分别为
A.26万元,42万元B.40万元,28万元
C.28万元,40万元D.42万元,26万元
8.某校体操队和篮球队的人数之比是5:6,篮球队的人数与体操队的人数的3倍的和等于42人,若设体操队的人数是x人,篮球队的人数为y人,则可列方程组为
A.B.
C.D.
9.一种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角,若设小瓶单价为x角,大瓶为y角,可列方程为
A.B.
C.D.
10.甲、乙两人从同一地点出发,同向而行,甲乘车,乙步行.如果乙先走20千米,那么甲用1小时能追上乙;如果乙先走1小时,那么甲只用15分钟就能追上乙,则甲的速度为__________千米/时.
11.如果长方形的周长是20 cm,长比宽多2 cm.若设长方形的长为x cm,宽为y cm,则所列方程组为__________.
12.一个宾馆有二人间、三人间、四人间三种客房供游客租住.某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,那么租房方案有几种?把每种方案都写出来.
13.已知甲、乙两种商品的原价和为200元。因市场变化,甲商品降价10%,乙商品提高10%,调价后甲、乙两种商品的单价和比原单价和提高了5%。求甲、乙两种商品的原单价各是多少元.
14.实践操作题某班学生植树,若每人植7棵树,则剩5棵树;若每人植8棵树,则有1人少植1棵树,问有多少名学生植树,有多少棵树.
(1)假设有x名学生植树,有y棵树,请列出关于这个问题的二元一次方程组;
(2)用列表的方法求出有多少名学生植树,有多少棵树.
15.某校规划在一块长AD为18 m、宽AB为13 m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?
16.目前节能灯在城市已基本普及,今年云南省面向县级及农村地区推广,为相应号召,某商场计划用3800元购进节能灯120只,这两种节能灯的进价、售价如下表:
(1)求甲、乙两种节能灯各进多少只?学=科网
(2)全部售完120只节能灯后,该商场获利润多少元?
【拓展】
17.小强到体育用品商店购买羽毛球球拍和乒乓球球拍,已知购买1副羽毛球球拍和1副乒乓球球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x元,每副乒乓球拍为y元,根据题意,下面所列方程组正确的是
A.B.
C.D.
18.甲乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则下列方程组中正确的是
A.B.
C.D.
19.如图①,在第一个天平上,砝码A的质量等于砝码B加上砝码C的质量;如图②,在第二个天平上,砝码A加上砝码B的质量等于3个砝码C的质量,则砝码A与砝码C的质量之比为
A.1∶2B.2∶1
C.1∶3D.3∶2
20.如图,在一个大长方形中放入六个形状、大小相同的小长方形,所标尺寸如图所示,则图中阴影部分的面积是
A.16B.44
C.96D.140
21.一个两位数,个位上的数比十位上的数的2倍多1,若将十位数字与个位数字调换位置,则比原两位数的2倍还多2,则原两位数是__________.
22.水果市场将120吨水果运往各地商家,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)
(1)若全部水果都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?
(2)为了节约运费,市场可以调用甲、乙、丙三种车型参与运送(每种车型至少1辆),已知它们的总辆数为16辆,你能通过列方程组的方法分别求出几种车型的辆数吗?
23.某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车的租金为每辆220元,60座客车的租金为每辆300元.
(1)这批学生有多少人?原计划租用45座客车多少辆?
(2)若租用同一种客车,且使每名学生都有座位,应该怎样租用才合算?
【真题】
24.(2018·福建)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是
A.B.
C.D.
25.(2018·河南)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y钱,根据题意,可列方程组为
A.B.
C.D.
26.(2018·新疆)某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x元,水笔每支为y元,那么根据题意,下列方程组中,正确的是
A.B.
C.D.
27.(2018·温州)学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组
A.B.
C.D.
28.(2018·深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有个,小房间有个.下列方程正确的是
A.B.
C.D.
29.(2018·泰安)夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为
A.B.
C.D.
30.(2018·龙东地区)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有
A.4种B.3种
C.2种D.1种
31.(2018·东营)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为
A.19B.18
C.16D.15
32.(2018·牡丹江)如图,在长为15,宽为12的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为
A.35B.45
C.55D.65
33.(2018·遵义)现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金__________两.
34.(2018·大连)《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为__________.
35.(2018·威海)用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为__________.
36.(2018·株洲)小强同学生日的月数减去日数为2,月数的两倍和日数相加为31,则小强同学生日的月数和日数的和为__________.
37.(2018·黄冈)在端午节来临之际,某商店订购了A型和B型两种粽子.A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.
38.(2018·陇南)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.
39.(2018·长沙)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.
(1)打折前甲、乙两种品牌粽子每盒分别为多少元?
(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?
重点
根据题意找出等量关系,并能根据题意列二元一次方程组
难点
正确找出问题中的等量关系
易错
找错等量关系
车型
甲
乙
丙
汽车运载量(吨/辆)
5
8
10
汽车运费(元/辆)
400
500
600
相关教案
这是一份初中数学人教版七年级下册8.3 实际问题与二元一次方程组第2课时教案及反思,共6页。教案主要包含了教学目标,课型,课时,教学重难点,课前准备,教学过程,教学反思等内容,欢迎下载使用。
这是一份人教版七年级下册8.3 实际问题与二元一次方程组第1课时教案及反思,共10页。教案主要包含了教学目标,课型,课时,教学重难点,课前准备,教学过程,教学反思等内容,欢迎下载使用。
这是一份数学七年级下册8.3 实际问题与二元一次方程组教学设计及反思,共9页。教案主要包含了教学重难点,教学过程,情景导入,初步认识,思考探究,获取新知,运用新知,深化理解,师生互动,课堂小结,课后作业,教学反思等内容,欢迎下载使用。