沪教版 (五四制)七年级上册第九章 整式第1节 整式的概念9.4 整式教案
展开理解字母表示数的意义。
会用字母替代一些简单问题中的数。
经历用字母表示一些常见的数或量的过程,领会字母表示数的数学思想。
感知用字母表示数的数学思想方法,提高观察、探究能力。
教学重点及难点
字母表示数的代数方法。
对字母表示数的代数方法的理解。
理解字母表示数的意义,并能把语言表述的数量关系用代数式表示。
教学过程
一、创设情境,探究新知
问题一:
1.请同学举几个满足加法交换律的例子。
2.设问1: 这样的例子有多少个?
设问2: 能否用规律性的式子表示?
引出式子:a+b=b+a (a、b表示有理数)
问题二:
1.如图,已知△ABC中,BC=7,高AH=4,求△ABC的面积。
A
B
C
H
2.求三角形面积的方法是什么?
3.注意:三角形面积公式要写成 S = ah
问题三:
有“亚洲第一”之称的长沙摩天轮于2004年9月30日建成,当年10月1日对外开放,是目前亚洲第一、世界第二的摩天轮。长沙摩天轮最令人称奇之处在于它立在巨型屋顶上。据专家介绍,将摩天轮建在屋顶上不仅在国内,就是在世界上也是独一无二的。如果长沙摩天轮垂直于地面时,最高点离地面120米,最低点离地面21米,那么这个巨型摩天轮的直径是多少?
提示:如果设大转盘的直径为r米,可如何列式?
问题四:
观察下列各组数的特点,用式子表示第n个数是什么?
(1),,,
(2)2, 4, 6, 8
问题五:
如图,用若干个大小相同的小正方形依次拼成大的正方形,问第5个和第10个大正方形需几个小正方形拼成?第 n 个呢?
二、应用新知,掌握方法
例:设某数为x,用x表示下列各数
1.某数的5倍减去3的差;
2.比某数的一半还多2的数;
3.某数的倍与2的差的5倍;
4.某数的60%除以m的相反数所得的商。
三、巩固新知,熟练方法
1.(1)已知长方形的长为a,宽为b,用a,b表示长方形的周长是 _______________。
(2)已知圆半径的r,用r表示圆的周长是_______________。
(3)已知梯形的上底为a,下底为b,高为h,用a,b,h表示梯形的面积是____________。
2.设某数是a,用a表示下列各数:
(1)某数的减去的差;
(2)某数的立方的相反数;
(3)8减去某数的一半的差;
(4)6减去某数的差除以x所得的商。
四、自我评价和小结
1.这节课你学会了什么?
2.注意:
1)在省略乘号时,字母与数字书写的位置一般要遵循数字写在前面,字母写在后面的要求;
2)当数字是带分数时,一般要把带分数写成假分数,然后与字母写在一起。
五、回家作业:
完成练习册:P1 习题9.1
教后记:
内容比较简单,学生容易掌握,但在书写上还是不符合代数式的书写要求,尤其是没有将除号用分数的形式来表示。
9.2代数式
教学目标
理解代数式的意义.
能根据所给数据求代数式的值。
领悟字母“代”数的数学思想,提高数学语言表达能力。
教学重点及难点
重点:把实际问题中的数量关系列成代数式.
难点:1、正确理解题意,从中找出数量关系里的运算顺序并能准确地写成代数式。
2、理解字母表示数的意义,并能把语言表述的数量关系用代数式表示。
教学过程
一、从学生原有的认知结构提出问题
1.设某数为x,用x表示下列各数:
(1)比x大5.
(2)比x的2倍小3
(3)x与3的和除以x的商
(4)x与5的和3倍.
2.用运算符号和括号把数或表示数的字母连接而成的式子叫做代数式.
合作练习
以小组为单位写出一些代数式,说明所写的代数式中包含了哪些运算,并说明代数式的运算顺序。
二、讲授新课.
例1 用代数式表示:
比a的3倍还多2的数.
b的倍的相反数.
x的平方的倒数减去的差.
9减去y的的差.
x的立方与2的和.
y的5倍与7的和的一半。
x的3倍与y的商。
分析:(1)题目中的语句包含了哪些运算?运算顺序是怎样的?
(2)如何表示相反数和倒数?
(3)在什么情况下需要添括号?
(4)一半怎样表示?
解 (1)3a+2
(2)
(3)
(4)
(5)x3+3
(6)
(7)
讨论:书写代数式时要注意哪些问题?
归纳:
(1)弄清运算顺序和括号的使用。一般按“先读先写”的原则列代数式。
(2)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。
(3)在代数式中出现除法时,用分数线表示。
例2.用代数式表示:
(1)甲乙两数和的5倍.
(2)甲减去乙数的差与甲数的相反数的积.
(3)甲乙两数的平方和.
(4)甲乙两数和的立方.
(5)乙甲两数之和与乙甲两数的差的积.
分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式.按照先读先写的原则,
解 (1)5(m+n)
(2)(m-n)(-m)
(3)m2+n2
(4)(m+n)3
(5)(n+m)(n-m)
练习 练习9.2 1
补充练习
设甲数为x,用代数式表示乙数:
(1)乙数比甲数大5.
(2)乙数比甲数的2倍小3.
(3)乙数比甲数的倒数小7.
(4)乙数比甲数大16%.
(5)乙数与甲数的积是16.
例3.如图,一个长方体的高为h,底面是一个边长为a的正方形,用代数式表示这个长方体的体积.
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
分析:问题中数量关系是什么?
长方体的体积=底面积×高,正方形的面积=a2
解 这个长方体的体积是a2h。
例4 某商场在进行促销活动,全场商品8折销售,小明的妈妈买了一件b元的商品,实际需要付多少元?
解 实际需要付80%b元。
归纳:列代数式是列方程解应用题的基础.
练习 9.2 2—4
备用题
如果数学书的每张纸长为a,宽为b,则纸张的面积和周长分别是多少?(ab,2a+2b)
a
b
某校七年级有a名学生,八年级有b名学生,九年级的人数有c名学生,学校一共有多少学生?(a+b+c)
如图所示图形的周长和面积分别是多少?(a+2b+πa,ab+πa2)
三、课堂小结:
1.怎样列代数式?
2.列代数式的关键是什么?
对于较复杂的数量关系,应按下述规律列代数式:
(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);
(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;
五、布置作业:
完成练习册 9.2
教后记:
能写出正确的代数式,但在书写格式上还有不少问题,比如出现除号,出现字母前面是带分数的情况。
9.3代数式的值(1)
教学目标
1、掌握代数式的值的概念;
2、能用具体数值代替代数式中的字母,求出代数式的值;
3、领悟字母“代”数的数学思想,提高数学语言表达能力。
教学重点和难点
正确地求出代数式的值
教学过程
一、情景引入(从学生原有的认识结构提出问题)
1用代数式表示:
(1)a与b的和的平方;
(2)a,b两数的平方和;
(3)a与b的和的50%
2用语言叙述代数式2n+10的意义
二、学习新课
1、给出概念
用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果叫做代数式的值。
2、概念辨析(结合上述例题,提出如下几个问题:)
(1)求代数式2n+10的值,必须给出什么条件?
(2)代数式的值是由什么值的确定而确定的?
代数式的值是由代数式里字母的取值的确定而确定的.只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应
(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?
3、例题分析.(教师板书例题时,应注意格式规范化)
当a分别取下列值时,求代数式的值.
(1)a=2 (2)a=-3 (3)a=
例2.当x=-2,y=时,求下列各代数式的值.
(1) (2)
解(1)当x=-2,y= -时
3x2-6xy+4y2=3×(-2)2-6×(-2)×(-)+4×(-)2
= 12-6+1 =7
(2)当x=-2,y= -时,
|6y+x|=|6(-)-2|=|-5|=5
注意:
(1)如果代数式中省略乘号,代入后需添上乘号;
(2)如果字母取值是分数,作乘方运算时要加括号;
(3)注意书写格式,“当……时”的字样不要丢;
(4)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中在代数式2n+10中,n是实际问题中的一个数,它就必须是自然数.
总结:求代数值的步骤:①代入数值②计算结果
三、巩固练习:P9 1、2
四.课堂小结:
1.本节课学习了哪些内容?
2.求代数式的值应分哪几步?
3.在“代入”这一步应注意什么”
五.作业布置
完成练习册 9.3
教后记:
方法、书写格式都能掌握,但问题还是出在计算能力上,计算差错较多,需要不断练习。
9.3代数式的值(2)
教学目标
巩固代数式的概念,并在这个基础上初步理解代数式的值的意义。
确熟练掌握求代数式的值的方法。
用代数式解决一些实际生活中的问题。
重点与难点
重点:理解代数式的值的意义并能准确求出代数式的值;
难点:利用代数式解决实际问题。
教学过程
一、情景引入
1、用PPT出示P6小正方形,规律让学生观察并填空。
2、给出定义:用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果叫做代数式的值。
二、学习新课
例题1 当a分别取下列值时,求代数式的值。
⑴ a=2; ⑵ a= -3; ⑶ a =
解 ⑴当a=2时,
= =9
⑵当a=-3时,
= =9
⑶当a = 时,
= ×(+1),2) =
例题2 如图(图见教材P8),这是一个长、宽分别是a米、b米的长方形绿化地,中间圆形区域计划做成花坛,它的半径是r米,其余部分种植绿草。
⑴问需种植绿草的面积是多少平方米?
⑵当a=10,b=4,r=时,求需种植绿草的面积。(π取3.14,精确到0.01平方米)
解⑴ab-πr2(平方米)
答:需种植绿草的面积是ab-πr2(平方米)
⑵当a=10,b=4,r=时
ab-πr2=10×4-3.14×()2 =40-3.14×≈38.60(平方米)
答:当a=10,b=4,r=时,需种植绿草的面积是38.60平方米。
三、巩固练习:P9 ①——③
四、课堂小结:
1.本节课学习了哪些内容?
2.求代数式的值应分哪几步?
3.在“代入”这一步应注意什么?
五、作业布置
完成练习册 习题9.3及补充习题。
教后记:
格式可以写正确,但计算还是有很大问题。
9.4整式
教学目标
理解单项式、多项式和整式中的有关概念。
知道“指数”与“次数”的联系与区别,能写出单项式中的系数。
会把多项式按某一字母进行升幂或降幂排列。
教学重点及难点
正确理解单项式、多项式及整式的概念,掌握单项式和多项式的特征,会正确区分单项式和多项式。
教学过程
一、复习引新
1.观察并思考:
⑴2x、 -2a2、ab2、这些代数式包含哪些运算?
⑵2x+3、a2+2a-1、3a2-b2+2a-3这些代数式包含哪些运算?
2.引出概念:单项式、多项式、整式
(1)由数与字母的积或字母与字母的积所组成的代数式叫做单项式,单项式中的数字因数叫做这个单项式的系数。一个单项式中所有字母的指数的和叫做这个单项式的次数。
口答:请说出⑴中的几个单项式的系数和次数。
注意:单独一个非零数的次数是0。当单项式的系数为1或—1时,这个“1”应省略不写。
(2)由几个单项式的和组成的代数式叫做多项式。在多项式中的每个单项式叫做多项式的项,不含字母的项叫做常数项。次数最高项的次数就是这个多项式的次数。
口答:请说出⑵中的几个多项式是由哪几个单项式组成的?其中有没有常数项?它们的次数分别是多少?为什么?
注意:确定多项式的次数时,应先确定每个单项式每个字母的指数;再计算这个单项式中所有字母的指数的和。
单项式与多项式的区别:
异
注意
单项式
没有加减运算
单项式注意系数(包括符号)和次数
多项式
有加减运算
多项式注意项数和次数
(3)单项式、多项式统称为整式。
练习:以小组为单位根据所给出的x、-2、y2组成一单项式和多项式,并指出单项式的次数和系数,多项式的次数。
二、巩固新知
例题1 下列代数式中哪些是单项式?哪些是多项式?
ab2、2a+3b、-4a2b4、
解 ab2、-4a2b4都是数与字母或字母与字母的积,所以它们是单项式。
2a+3b、都是由两个单项式的和组成,所以它们是多项式。
注意:=-
练习:P11 1、2、3
例题2 将多项式3+6x2y-2xy-5x3y2-4x4y先按字母x升幂排列,再按x降幂排列。
分析:为了计算需要,可以将多项式各项的位置根据加法交换律按照其中某一个字母的指数大小顺序来排列。把多项式x2+5x+4x4-3x3+2按字母x 的指数从大到小的顺序排列,写成4x4-3x3+x2+5x+2,这叫做把多项式按这个字母降幂排列。或按字母x 的指数从小到大的顺序排列,写成2+5x+ x2-3x3+4x4,,这叫做把多项式按这个字母升幂排列。
解 按字母x 升幂排列是3-2xy+6x2y-5x3y2-4x4y。
按字母x 降幂排列是-4x4y-5x3y2+6x2y-2xy+3
练习 P11 3
三、课堂小结
今天我学会了哪些知识?
四、布置作业
完成练习册9.4
五、拓展练习
如果是关于的单项式,且系数为2,次数为3,则分别是多少?
如果多项式的次数为4次,且有三项,则为多少?
教后记:
概念较多,指出多项式是几次几项式错误较多,而且按某一字母降幂或升幂排列错误也不少。
初中数学沪教版 (五四制)七年级上册第九章 整式综合与测试教学设计: 这是一份初中数学沪教版 (五四制)七年级上册第九章 整式综合与测试教学设计,共9页。教案主要包含了创设情境,探究新知,应用新知,掌握方法,巩固新知,熟练方法,自我评价和小结,回家作业等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级上册10.6 整数指数幂及其运算教学设计: 这是一份初中数学沪教版 (五四制)七年级上册10.6 整数指数幂及其运算教学设计,共17页。教案主要包含了复习旧知,引入新课,新课讲授,巩固练习,课堂小结,回家作业等内容,欢迎下载使用。
数学七年级上册11.2 旋转教案: 这是一份数学七年级上册11.2 旋转教案,共8页。教案主要包含了情景引入,新知学习与探索,巩固练习,自主小结,作业布置,课后探索等内容,欢迎下载使用。