





第九章 9.1直线的方-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】
展开第1课时
进门测
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)根据直线的倾斜角的大小不能确定直线的位置.( √ )
(2)坐标平面内的任何一条直线均有倾斜角与斜率.( × )
(3)直线的倾斜角越大,其斜率就越大.( × )
(4)直线的斜率为tan α,则其倾斜角为α.( × )
(5)斜率相等的两直线的倾斜角不一定相等.( × )
(6)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.( √ )
作业检查
无
第2课时
阶段训练
题型一 直线的倾斜角与斜率
例1 (1)已知直线l的倾斜角为α,斜率为k,那么“α>”是“k>”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
(2)直线l过点P(1,0),且与以A(2,1),B(0,)为端点的线段有公共点,则直线l斜率的取值范围为 .
答案 (1)B (2)(-∞,-]∪[1,+∞)
解析 (1)当<α<π时,k<0;
当k>时,<α<.
所以“α>”是“k>”的必要不充分条件,故选B.
(2)如图,
∵kAP==1,
kBP==-,
∴k∈(-∞,- ]∪[1,+∞).
引申探究
1.若将题(2)中P(1,0)改为P(-1,0),其他条件不变,求直线l斜率的取值范围.
解 ∵P(-1,0),A(2,1),B(0,),
∴kAP==,
kBP==.
如图可知,直线l斜率的取值范围为.
2.若将题(2)中的B点坐标改为(2,-1),其他条件不变,求直线l倾斜角的范围.
解 如图,直线PA的倾斜角为45°,
直线PB的倾斜角为135°,
由图象知l的倾斜角的范围为[0°,45°]∪[135°,180°).
思维升华 直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分与两种情况讨论.由正切函数图象可以看出,当α∈时,斜率k∈[0,+∞);当α=时,斜率不存在;当α∈时,斜率k∈(-∞,0).
已知过定点P(2,0)的直线l与曲线y=相交于A,B两点,O为坐标原点,当△AOB的面积取到最大值时,直线l的倾斜角为( )
A.150° B.135° C.120° D.不存在
答案 A
解析 由y=得x2+y2=2(y≥0),它表示以原点O为圆心,以为半径的圆的一部分,其图象如图所示.
显然直线l的斜率存在,
设过点P(2,0)的直线l为y=k(x-2),则圆心到此直线的距离d=,
弦长|AB|=2 =2,
所以S△AOB=××2
≤=1,
当且仅当(2k)2=2-2k2,即k2=时等号成立,
由图可得k=-(k=舍去),故直线l的倾斜角为150°.
题型二 求直线的方程
例2 根据所给条件求直线的方程:
(1)直线过点(-4,0),倾斜角的正弦值为;
(2)直线过点(5,10),到原点的距离为5;
(3)过点A(-5,-4)作直线l,使它与两坐标轴相交且与两轴所围成的三角形面积为5,求直线l的方程.
解 (1)由题设知,该直线的斜率存在,故可采用点斜式.
设倾斜角为α,则sin α=(0<α<π),
从而cos α=±,则k=tan α=±.
故所求直线方程为y=±(x+4).
即x+3y+4=0或x-3y+4=0.
(2)当斜率不存在时,所求直线方程为x-5=0;
当斜率存在时,设其为k,
则所求直线方程为y-10=k(x-5),
即kx-y+(10-5k)=0.
由点到直线的距离公式,得=5,解得k=.
故所求直线方程为3x-4y+25=0.
综上知,所求直线方程为x-5=0或3x-4y+25=0.
(3)由已知,l的两截距不为0,
设l的方程为+=1,
则解得或
∴直线l的方程为-=1或+=1,
即2x-5y-10=0或8x-5y+20=0.
思维升华 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.
求适合下列条件的直线方程:
(1)经过点P(3,2)且在两坐标轴上的截距相等;
(2)过点A(-1,-3),斜率是直线y=3x的斜率的-倍;
(3)过点A(1,-1)与已知直线l1:2x+y-6=0相交于B点且|AB|=5.
解 (1)设直线l在x,y轴上的截距均为a,
若a=0,即l过点(0,0)和(3,2),
∴l的方程为y=x,即2x-3y=0.
若a≠0,则设l的方程为+=1,
∵l过点(3,2),∴+=1,
∴a=5,∴l的方程为x+y-5=0,
综上可知,直线l的方程为2x-3y=0或x+y-5=0.
(2)设所求直线的斜率为k,依题意k=-×3=-.
又直线经过点A(-1,-3),
因此所求直线方程为y+3=-(x+1),
即3x+4y+15=0.
(3)过点A(1,-1)与y轴平行的直线为x=1.
解方程组
求得B点坐标为(1,4),此时|AB|=5,
即x=1为所求.
设过A(1,-1)且与y轴不平行的直线为
y+1=k(x-1),
解方程组
得两直线交点为(k≠-2,否则与已知直线平行),
则B点坐标为(,).
∴(-1)2+(+1)2=52,
解得k=-,∴y+1=-(x-1),
即3x+4y+1=0.
综上可知,所求直线方程为x=1或3x+4y+1=0.
题型三 直线方程的综合应用
命题点1 与基本不等式相结合求最值问题
例3 已知直线l过点P(3,2),且与x轴、y轴的正半轴分别交于A、B两点,如图所示,求△ABO的面积的最小值及此时直线l的方程.
解 方法一 设直线方程为+=1(a>0,b>0),
把点P(3,2)代入得+=1≥2,得ab≥24,
从而S△AOB=ab≥12,当且仅当=时等号成立,这时k=-=-,从而所求直线方程为2x+3y-12=0.
方法二 依题意知,直线l的斜率k存在且k<0.
则直线l的方程为y-2=k(x-3)(k<0),
且有A,B(0,2-3k),
∴S△ABO=(2-3k)=
≥
=×(12+12)=12.
当且仅当-9k=,即k=-时,等号成立.
即△ABO的面积的最小值为12.
故所求直线的方程为2x+3y-12=0.
命题点2 由直线方程解决参数问题
例4 已知直线l1:ax-2y=2a-4,l2:2x+a2y=2a2+4,当0<a<2时,直线l1,l2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a的值.
解 由题意知直线l1,l2恒过定点P(2,2),直线l1在y轴上的截距为2-a,直线l2在x轴上的截距为a2+2,所以四边形的面积S=×2×(2-a)+×2×(a2+2)=a2-a+4=2+,当a=时,面积最小.
思维升华 与直线方程有关问题的常见类型及解题策略
(1)求解与直线方程有关的最值问题.先设出直线方程,建立目标函数,再利用基本不等式求解最值.
(2)求直线方程.弄清确定直线的两个条件,由直线方程的几种特殊形式直接写出方程.
(3)求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解.
直线l过点P(1,4),分别交x轴的正半轴和y轴的正半轴于A,B两点,O为坐标原点,当|OA|+|OB|最小时,求直线l的方程.
解 依题意,直线l的斜率存在且斜率为负,
设直线l的斜率为k,
则直线l的方程为y-4=k(x-1)(k<0).
令y=0,可得A(1-,0);
令x=0,可得B(0,4-k).
|OA|+|OB|=(1-)+(4-k)
=5-(k+)
=5+(-k+)≥5+4=9.
∴当且仅当-k=且k<0,
即k=-2时,|OA|+|OB|取最小值.
这时直线l的方程为2x+y-6=0.
第3课时
阶段重难点梳理
1.直线的倾斜角
(1)定义:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为0°.
(2)范围:直线l倾斜角的范围是[0°,180°).
2.斜率公式
(1)若直线l的倾斜角α≠90°,则斜率k=tan α.
(2)P1(x1,y1),P2(x2,y2)在直线l上且x1≠x2,则l的斜率k=.
3.直线方程的五种形式
名称
方程
适用范围
点斜式
y-y0=k(x-x0)
不含直线x=x0
斜截式
y=kx+b
不含垂直于x轴的直线
两点式
=
不含直线x=x1 (x1≠x2)和
直线y=y1 (y1≠y2)
截距式
+=1
不含垂直于坐标轴和过原点的直线
一般式
Ax+By+C=0(A2+B2≠0)
平面直角坐标系内的直线都适用
【知识拓展】
1.直线系方程
(1)与直线Ax+By+C=0平行的直线系方程是Ax+By+m=0(m∈R且m≠C).
(2)与直线Ax+By+C=0垂直的直线系方程是Bx-Ay+m=0(m∈R).
2.两直线平行或重合的充要条件
直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0平行或重合的充要条件是A1B2-A2B1=0.
3.两直线垂直的充要条件
直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0垂直的充要条件是A1A2+B1B2=0.
重点题型训练
典例 设直线l的方程为(a+1)x+y+2-a=0(a∈R).
(1)若l在两坐标轴上的截距相等,求直线l的方程;
(2)若l在两坐标轴上的截距互为相反数,求a.
错解展示
现场纠错
解 (1)当直线过原点时,该直线在x轴和y轴上的截距为零,∴a=2,方程即为3x+y=0.
当直线不经过原点时,截距存在且均不为0.
∴=a-2,即a+1=1.
∴a=0,方程即为x+y+2=0.
综上,直线l的方程为3x+y=0或x+y+2=0.
(2)由=-(a-2)得a-2=0或a+1=-1,
∴a=2或a=-2.
纠错心得 在求与截距有关的直线方程时,注意对直线的截距是否为零进行分类讨论,防止忽视截距为零的情形,导致产生漏解.
1.过点M(-2,m),N(m,4)的直线的斜率等于1,则m的值为( )
A.1 B.4
C.1或3 D.1或4
答案 A
解析 依题意得=1,解得m=1.
2.直线x+(a2+1)y+1=0的倾斜角的取值范围是( )
A.[0,] B.[,π)
C.[0,]∪(,π) D.[,)∪[,π)
答案 B
解析 由直线方程可得该直线的斜率为-,
又-1≤-<0,
所以倾斜角的取值范围是[,π).
3.如果A·C<0且B·C<0,那么直线Ax+By+C=0不通过( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
答案 C
解析 由已知得直线Ax+By+C=0在x轴上的截距->0,在y轴上的截距->0,故直线经过第一、二、四象限,不经过第三象限.
4.直线l:ax+y-2-a=0在x轴和y轴上的截距相等,则实数a= .
答案 1或-2
解析 令x=0,得直线l在y轴上的截距为2+a;
令y=0,得直线l在x轴上的截距为1+,
依题意2+a=1+,解得a=1或a=-2.
作业布置
1.若直线y=-2x+3k+14与直线x-4y=-3k-2的交点位于第四象限,则实数k的取值范围是( )
A.-6
答案 A
解析 解方程组得
因为直线y=-2x+3k+14与直线x-4y=-3k-2的交点位于第四象限,
所以k+6>0且k+2<0,所以-6
A.x=2 B.y=1
C.x=1 D.y=2
答案 A
解析 ∵直线y=-x-1的斜率为-1,则倾斜角为,
依题意,所求直线的倾斜角为-=,
∴斜率不存在,∴过点(2,1)的所求直线方程为x=2.
3.直线mx-y+2m+1=0经过一定点,则该定点的坐标是( )
A.(-2,1) B.(2,1)
C.(1,-2) D.(1,2)
答案 A
解析 mx-y+2m+1=0,即m(x+2)-y+1=0.
令得
故定点坐标为(-2,1).
4.已知两点M(2,-3),N(-3,-2),直线l过点P(1,1)且与线段MN相交,则直线l的斜率k的取值范围是( )
A.k≥或k≤-4 B.-4≤k≤
C.≤k≤4 D.-≤k≤4
答案 A
解析 如图所示,
∵kPN==,
kPM==-4.
∴要使直线l与线段MN相交,
当l的倾斜角小于90°时,k≥kPN;
当l的倾斜角大于90°时,k≤kPM,
由已知得k≥或k≤-4.
5.直线ax+by+c=0同时要经过第一、二、四象限,则a,b,c应满足( )
A.ab>0,bc<0
B.ab>0,bc>0
C.ab<0,bc>0
D.ab<0,bc<0
答案 A
解析 由于直线ax+by+c=0经过第一、二、四象限,
所以直线存在斜率,将方程变形为y=-x-.
易知-<0且->0,故ab>0,bc<0.
6.如图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则 ( )
A.k1<k2<k3
B.k3<k1<k2
C.k3<k2<k1
D.k1<k3<k2
答案 D
解析 直线l1的倾斜角α1是钝角,故k1<0,直线l2与l3的倾斜角α2与α3均为锐角且α2>α3,所以0<k3<k2,因此k1<k3<k2,故选D.
7.已知A(3,0),B(0,4),直线AB上一动点P(x,y),则xy的最大值是 .
答案 3
解析 直线AB的方程为+=1,
∵动点P(x,y)在直线AB上,则x=3-y,
∴xy=3y-y2=(-y2+4y)
=[-(y-2)2+4]≤3.
即当P点坐标为时,xy取最大值3.
8.直线l过点(-2,2)且与x轴,y轴分别交于点(a,0),(0,b),若|a|=|b|,则直线l的方程为 .
答案 x+y=0或x-y+4=0
解析 若a=b=0,则直线l过点(0,0)与(-2,2),
直线l的斜率k=-1,直线l的方程为y=-x,即x+y=0.
若a≠0,b≠0,则直线l的方程为+=1,
由题意知解得
此时,直线l的方程为x-y+4=0.
9.直线l:ax+(a+1)y+2=0的倾斜角大于45°,则a的取值范围是 .
答案 (-∞,-)∪(0,+∞)
解析 当a=-1时,直线l的倾斜角为90°,符合题意.
当a≠-1时,直线l的斜率k=-,
由题意知->1或-<0,
解得-10.
综上知,a<-或a>0.
10.函数y=a1-x(a>0,a≠1)的图象恒过定点A,若点A在mx+ny-1=0(mn>0)上,则+的最小值为 .
答案 4
解析 ∵函数y=a1-x(a>0,a≠1)的图象恒过定点A(1,1).
∴把A(1,1)代入直线方程得m+n=1(mn>0).
∴+=(+)·(m+n)=2++≥4
(当且仅当m=n=时取等号),
∴+的最小值为4.
11.已知两点A(-1,2),B(m,3).
(1)求直线AB的方程;
(2)已知实数m∈[--1,-1],求直线AB的倾斜角α的取值范围.
解 (1)当m=-1时,直线AB的方程为x=-1,
当m≠-1时,直线AB的方程为y-2=(x+1).
即x-(m+1)y+2m+3=0.
(2)①当m=-1时,α=;
②当m≠-1时,m+1∈[-,0)∪(0,],
∴k=∈(-∞,-]∪[,+∞),
∴α∈[,)∪(,].
综合①②知,直线AB的倾斜角α∈[,].
12.已知点P(2,-1).
(1)求过点P且与原点的距离为2的直线l的方程;
(2)求过点P且与原点的距离最大的直线l的方程,最大距离是多少?
(3)是否存在过点P且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由.
解 (1)过点P的直线l与原点的距离为2,而点P的坐标为(2,-1),显然,过点P(2,-1)且垂直于x轴的直线满足条件,
此时直线l的斜率不存在,其方程为x=2.
若斜率存在,设l的方程为y+1=k(x-2),
即kx-y-2k-1=0.
由已知得=2,
解得k=.
此时l的方程为3x-4y-10=0.
综上可得直线l的方程为x=2或3x-4y-10=0.
(2)作图可得过点P与原点O的距离最大的直线是过点P且与PO垂直的直线,如图所示.
由l⊥OP,得klkOP=-1,
所以kl=-=2.
由直线方程的点斜式,
得y+1=2(x-2),
即2x-y-5=0.
所以直线2x-y-5=0是过点P且与原点O的距离最大的直线,最大距离为=.
(3)由(2)可知,过点P不存在到原点的距离超过的直线,因此不存在过点P且到原点的距离为6的直线.
*13.如图,射线OA、OB分别与x轴正半轴成45°和30°角,过点P(1,0)作直线AB分别交OA、OB于A、B两点,当AB的中点C恰好落在直线y=x上时,求直线AB的方程.
解 由题意可得kOA=tan 45°=1,
kOB=tan(180°-30°)=-,
所以直线lOA:y=x,lOB:y=-x.
设A(m,m),B(-n,n),
所以AB的中点C,
由点C在直线y=x上,且A、P、B三点共线得
解得m=,所以A(,).
又P(1,0),所以kAB=kAP==,
所以lAB:y=(x-1),
即直线AB的方程为(3+)x-2y-3-=0.
第九章 9.7抛物线-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】: 这是一份第九章 9.7抛物线-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】,文件包含第九章97抛物线-学生版docx、第九章97抛物线-教师版docx等2份学案配套教学资源,其中学案共42页, 欢迎下载使用。
第九章 9.3圆的方程-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】: 这是一份第九章 9.3圆的方程-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】,文件包含第九章93圆的方程-学生版docx、第九章93圆的方程-教师版docx等2份学案配套教学资源,其中学案共27页, 欢迎下载使用。
第八章 8.5直线、平面垂直-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】: 这是一份第八章 8.5直线、平面垂直-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】,文件包含第八章85直线平面垂直-学生版docx、第八章85直线平面垂直-教师版docx等2份学案配套教学资源,其中学案共42页, 欢迎下载使用。