高三数学一轮复习: 第8章 第5节 椭 圆
展开1.椭圆的定义
(1)平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.
(2)集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.
①当2a>|F1F2|时,M点的轨迹为椭圆;
②当2a=|F1F2|时,M点的轨迹为线段F1F2;
③当2a<|F1F2|时,M点的轨迹不存在.
2.椭圆的标准方程和几何性质
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.( )
(2)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).( )
(3)椭圆的离心率e越大,椭圆就越圆.( )
(4)椭圆既是轴对称图形,又是中心对称图形.( )
[答案] (1)× (2)√ (3)× (4)√
2.(教材改编)已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于eq \f(1,2),则C的方程是( )
A.eq \f(x2,3)+eq \f(y2,4)=1 B.eq \f(x2,4)+eq \f(y2,\r(3))=1
C.eq \f(x2,4)+eq \f(y2,2)=1 D.eq \f(x2,4)+eq \f(y2,3)=1
D [椭圆的焦点在x轴上,c=1.
又离心率为eq \f(c,a)=eq \f(1,2),故a=2,b2=a2-c2=4-1=3,
故椭圆的方程为eq \f(x2,4)+eq \f(y2,3)=1.]
3.(2015·广东高考)已知椭圆eq \f(x2,25)+eq \f(y2,m2)=1(m>0)的左焦点为F1(-4,0),则m=
( )
A.2 B.3
C.4 D.9
B [由左焦点为F1(-4,0)知c=4.又a=5,∴25-m2=16,解得m=3或-3.又m>0,故m=3.]
4.(2016·全国卷Ⅰ)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的eq \f(1,4),则该椭圆的离心率为( )
A.eq \f(1,3) B.eq \f(1,2)
C.eq \f(2,3) D.eq \f(3,4)
B [如图,|OB|为椭圆中心到l的距离,则|OA|·|OF|=|AF|·|OB|,即bc=a·eq \f(b,2),所以e=eq \f(c,a)=eq \f(1,2).]
5.椭圆eq \f(x2,4)+eq \f(y2,3)=1的左焦点为F,直线x=m与椭圆相交于点A,B,当△FAB的周长最大时,△FAB的面积是__________.
3 [直线x=m过右焦点(1,0)时,△FAB的周长最大,由椭圆定义知,其周长为4a=8,即a=2,
此时,|AB|=2×eq \f(b2,a)=eq \f(2×3,2)=3,
∴S△FAB=eq \f(1,2)×2×3=3.]
(1)如图851所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是( )
【导学号:01772310】
图851
A.椭圆 B.双曲线
C.抛物线 D.圆
(2)设F1,F2分别是椭圆E:x2+eq \f(y2,b2)=1(0(1)A (2)x2+eq \f(3,2)y2=1 [(1)由条件知|PM|=|PF|.
∴|PO|+|PF|=|PO|+|PM|=|OM|=R>|OF|.
∴P点的轨迹是以O,F为焦点的椭圆.
(2)不妨设点A在第一象限,设半焦距为c,
则F1(-c,0),F2(c,0).
∵AF2⊥x轴,则A(c,b2)(其中c2=1-b2,0又|AF1|=3|F1B|,得eq \(AF1,\s\up13(→))=3eq \(F1B,\s\up13(→)),
设B(x0,y0),则(-2c,-b2)=3(x0+c,y0),
∴x0=-eq \f(5c,3)且y0=-eq \f(b2,3),
代入椭圆x2+eq \f(y2,b2)=1,得25c2+b2=9,①
又c2=1-b2,②
联立①②,得b2=eq \f(2,3).
故椭圆E的方程为x2+eq \f(3,2)y2=1.]
[规律方法] 1.(1)利用椭圆的定义定形状时,一定要注意常数2a>|F1F2|这一条件.
(2)当涉及到焦点三角形有关的计算或证明时,常利用勾股定理、正(余)弦定理、椭圆定义,但一定要注意|PF1|+|PF2|与|PF1|·|PF2|的整体代换.
2.求椭圆标准方程的基本方法是待定系数法,具体过程是先定位,再定量,即首先确定焦点所在的位置,然后再根据条件建立关于a,b的方程组,若焦点位置不确定,可把椭圆方程设为Ax2+By2=1(A>0,B>0,A≠B)的形式.
[变式训练1] (1)已知F1,F2是椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的两个焦点,P为椭圆C上的一点,且eq \(PF1,\s\up13(→))⊥eq \(PF2,\s\up13(→)).
若△PF1F2的面积为9,则b=__________.
(2)已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交C于A,B两点,且|AB|=3,则C的方程为__________.
(1)3 (2)eq \f(x2,4)+eq \f(y2,3)=1 [(1)由定义,|PF1|+|PF2|=2a,且eq \(PF1,\s\up13(→))⊥eq \(PF2,\s\up13(→)),
∴|PF1|2+|PF2|2=|F1F2|2=4c2,
∴(|PF1|+|PF2|)2-2|PF1||PF2|=4c2,
∴2|PF1||PF2|=4a2-4c2=4b2,∴|PF1||PF2|=2b2.
∴S△PF1F2=eq \f(1,2)|PF1||PF2|=eq \f(1,2)×2b2=9,因此b=3.
(2)依题意,设椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0).
过点F2(1,0)且垂直于x轴的直线被曲线C截得弦长|AB|=3,
∴点Aeq \b\lc\(\rc\)(\a\vs4\al\c1(1,\f(3,2)))必在椭圆上,
∴eq \f(1,a2)+eq \f(9,4b2)=1.①
又由c=1,得1+b2=a2.②
由①②联立,得b2=3,a2=4.
故所求椭圆C的方程为eq \f(x2,4)+eq \f(y2,3)=1.]
(2016·全国卷Ⅲ)已知O为坐标原点,F是椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的左焦点,A,B分别为C的左、右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为( )
A.eq \f(1,3) B.eq \f(1,2)
C.eq \f(2,3) D.eq \f(3,4)
A [法一:设点M(-c,y0),OE的中点为N,则直线AM的斜率k=eq \f(y0,a-c),从而直线AM的方程为y=eq \f(y0,a-c)(x+a),令x=0,得点E的纵坐标yE=eq \f(ay0,a-c).
同理,OE的中点N的纵坐标yN=eq \f(ay0,a+c).
∵2yN=yE,∴eq \f(2,a+c)=eq \f(1,a-c),即2a-2c=a+c,
∴e=eq \f(c,a)=eq \f(1,3).
法二:如图,设OE的中点为N,由题意知
|AF|=a-c,|BF|=a+c,|OF|=c,|OA|=|OB|=a.
∵PF∥y轴,
∴eq \f(|MF|,|OE|)=eq \f(|AF|,|AO|)=eq \f(a-c,a),eq \f(|MF|,|ON|)=eq \f(|BF|,|OB|)=eq \f(a+c,a).
又eq \f(|MF|,|OE|)=eq \f(|MF|,2|ON|),即eq \f(a-c,a)=eq \f(a+c,2a),
∴a=3c,故e=eq \f(c,a)=eq \f(1,3).]
[规律方法] 1.与椭圆几何性质有关的问题要结合图形进行分析.
2.求椭圆离心率的主要方法有:(1)直接求出a,c的值,利用离心率公式直接求解.(2)列出含有a,b,c的齐次方程(或不等式),借助于b2=a2-c2消去b,转化为含有e的方程(或不等式)求解.
[变式训练2] (2015·福建高考)已知椭圆E:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆E于A,B两点.若|AF|+|BF|=4,点M到直线l的距离不小于eq \f(4,5),则椭圆E的离心率的取值范围是( )
A.eq \b\lc\(\rc\](\a\vs4\al\c1(0,\f(\r(3),2))) B.eq \b\lc\(\rc\](\a\vs4\al\c1(0,\f(3,4)))
C.eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(\r(3),2),1)) D.eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(3,4),1))
A [根据椭圆的对称性及椭圆的定义可得A,B两点到椭圆左、右焦点的距离为4a=2(|AF|+|BF|)=8,所以a=2.又d=eq \f(|3×0-4×b|,\r(32+-42))≥eq \f(4,5),所以1≤b<2,所以e=eq \f(c,a)=eq \r(1-\f(b2,a2))=eq \r(1-\f(b2,4)).因为1≤b<2,所以0
已知椭圆E:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为eq \f(c,2).
【导学号:01772311】
(1)求椭圆E的离心率;
(2)如图852,AB是圆M:(x+2)2+(y-1)2=eq \f(5,2)的一条直径,若椭圆E经过A,B两点,求椭圆E的方程.
图852
[解] (1)过点(c,0),(0,b)的直线方程为bx+cy-bc=0,则原点O到该直线的距离d=eq \f(bc,\r(b2+c2))=eq \f(bc,a),3分
由d=eq \f(1,2)c,得a=2b=2 eq \r(a2-c2),解得离心率eq \f(c,a)=eq \f(\r(3),2).5分
(2)由(1)知,椭圆E的方程为x2+4y2=4b2.①
依题意,圆心M(-2,1)是线段AB的中点,且|AB|=eq \r(10).
易知,AB与x轴不垂直,设其方程为y=k(x+2)+1,
代入①得(1+4k2)x2+8k(2k+1)x+4(2k+1)2-4b2=0.8分
设A(x1,y1),B(x2,y2),
则x1+x2=-eq \f(8k2k+1,1+4k2),x1x2=eq \f(42k+12-4b2,1+4k2).
由x1+x2=-4,得-eq \f(8k2k+1,1+4k2)=-4,解得k=eq \f(1,2).
从而x1x2=8-2b2.10分
于是|AB|=eq \r(1+\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))2)|x1-x2|
=eq \f(\r(5),2)eq \r(x1+x22-4x1x2)=eq \r(10b2-2).
由|AB|=eq \r(10),得eq \r(10b2-2)=eq \r(10),解得b2=3.
故椭圆E的方程为eq \f(x2,12)+eq \f(y2,3)=1.12分
☞角度2 由位置关系研究直线的性质
(2015·全国卷Ⅱ)已知椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的离心率为eq \f(\r(2),2),点(2,eq \r(2))在C上.
(1)求C的方程;
(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.
[解] (1)由题意有eq \f(\r(a2-b2),a)=eq \f(\r(2),2),eq \f(4,a2)+eq \f(2,b2)=1,
解得a2=8,b2=4.3分
所以C的方程为eq \f(x2,8)+eq \f(y2,4)=1.5分
(2)证明:设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM).7分
将y=kx+b代入eq \f(x2,8)+eq \f(y2,4)=1,得
(2k2+1)x2+4kbx+2b2-8=0.9分
故xM=eq \f(x1+x2,2)=eq \f(-2kb,2k2+1),yM=k·xM+b=eq \f(b,2k2+1).
于是直线OM的斜率kOM=eq \f(yM,xM)=-eq \f(1,2k),
即kOM·k=-eq \f(1,2).
所以直线OM的斜率与直线l的斜率的乘积为定值.12分
[规律方法] 1.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.
2.设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=eq \r(1+k2[x1+x22-4x1x2])
=eq \r(\b\lc\(\rc\)(\a\vs4\al\c1(1+\f(1,k2)))[y1+y22-4y1y2])(k为直线斜率).
[思想与方法]
1.椭圆的定义揭示了椭圆的本质属性,正确理解、掌握定义是关键,应注意定义中的常数大于|F1F2|,避免了动点轨迹是线段或不存在的情况.
2.求椭圆方程的方法,除了直接根据定义外,常用待定系数法.当椭圆的焦点位置不明确而无法确定其标准方程时,设方程为eq \f(x2,m)+eq \f(y2,n)=1(m>0,n>0,且m≠n)可以避免讨论和烦琐的计算,也可以设为Ax2+By2=1(A>0,B>0,且A≠B),这种形式在解题中更简便.
3.讨论椭圆的几何性质时,离心率问题是重点,常用方法:
(1)求得a,c的值,直接代入公式e=eq \f(c,a)求得;
(2)列出关于a,b,c的齐次方程(或不等式),然后根据b2=a2-c2,消去b,转化成关于e的方程(或不等式)求解.
[易错与防范]
1.判断两种标准方程的方法是比较标准形式中x2与y2的分母大小.
2.注意椭圆的范围,在设椭圆eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)上点的坐标为P(x,y)时,则|x|≤a,这往往在求与点P有关的最值问题中用到,也是容易被忽视而导致求最值错误的原因.
3.椭圆上任意一点M到焦点F的最大距离为a+c,最小距离为a-c.标准方程
eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)
eq \f(y2,a2)+eq \f(x2,b2)=1(a>b>0)
图形
性
质
范围
-a≤x≤a
-b≤y≤b
-b≤x≤b
-a≤y≤a
对称性
对称轴:坐标轴;对称中心:原点
顶点
A1(-a,0),A2(a,0),
B1(0,-b),B2(0,b)
A1(0,-a),A2(0,a),
B1(-b,0),B2(b,0)
离心率
e=eq \f(c,a),且e∈(0,1)
a,b,c的关系
c2=a2-b2
椭圆的定义与标准方程
椭圆的几何性质
直线与椭圆的位置关系
2024年数学高考大一轮复习第九章 §9.5 椭 圆: 这是一份2024年数学高考大一轮复习第九章 §9.5 椭 圆,共4页。试卷主要包含了已知椭圆C,椭圆C,已知B,0)是圆A等内容,欢迎下载使用。
2024年数学高考大一轮复习第九章 §9.5 椭 圆: 这是一份2024年数学高考大一轮复习第九章 §9.5 椭 圆,共6页。
备战2024高考一轮复习数学(理) 课时验收评价(五十七) 椭 圆: 这是一份备战2024高考一轮复习数学(理) 课时验收评价(五十七) 椭 圆,共5页。试卷主要包含了点全面广强基训练,重点难点培优训练等内容,欢迎下载使用。