![高考数学二轮复习专题2.16 导数真题再现(原卷版)01](http://img-preview.51jiaoxi.com/3/3/6000316/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高考数学二轮复习专题2.16 导数真题再现(原卷版)02](http://img-preview.51jiaoxi.com/3/3/6000316/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高考数学二轮复习专题2.16 导数真题再现(原卷版)03](http://img-preview.51jiaoxi.com/3/3/6000316/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
高考数学二轮复习专题2.16 导数真题再现(原卷版)
展开导数真题再现
1.若函数f(x)=ax2+1图象上点(1,f(1))处的切线平行于直线y=2x+1,则a=( )
A.﹣1 B.0 C. D.1
2.函数f(x)=的图象大致为( )
A. B.
C. D.
3.设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为( )
A.y=﹣2x B.y=﹣x C.y=2x D.y=x
4.若x=﹣2是函数f(x)=(x2+ax﹣1)ex﹣1的极值点,则f(x)的极小值为( )
A.﹣1 B.﹣2e﹣3 C.5e﹣3 D.1
5.若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是( )
A.[﹣1,1] B.[﹣1,] C.[﹣,] D.[﹣1,﹣]
二.填空题(共13小题)
6.已知函数f(x)=exlnx,f′(x)为f(x)的导函数,则f′(1)的值为 .
7.若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为 .
8.曲线y=2lnx在点(1,0)处的切线方程为 .
9.已知函数f(x)=2sinx+sin2x,则f(x)的最小值是 .
10.曲线y=(ax+1)ex在点(0,1)处的切线的斜率为﹣2,则a= .
11.曲线y=2ln(x+1)在点(0,0)处的切线方程为 .
12.若曲线的切线l与直线平行,则l的方程为 .
13.已知a∈R,设函数f(x)=ax﹣lnx的图象在点(1,f(1))处的切线为l,则l在y轴上的截距为 .
14.曲线y=x2+在点(1,2)处的切线方程为 .
15.已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f(x)在点(1,﹣3)处的切线方程是 .
16.已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,则曲线y=f(x)在点(1,2)处的切线方程是 .
17.若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b= .
18.已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a= .
三.解答题(共22小题)
19.设函数f(x)=[ax2﹣(4a+1)x+4a+3]ex.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a;
(Ⅱ)若f(x)在x=2处取得极小值,求a的取值范围.
20.已知函数f(x)=(2+x+ax2)ln(1+x)﹣2x.
(1)若a=0,证明:当﹣1<x<0时,f(x)<0;当x>0时,f(x)>0;
(2)若x=0是f(x)的极大值点,求a.
21.已知函数f(x)=aex﹣lnx﹣1.
(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;
(2)证明:当a≥时,f(x)≥0.
22.已知函数f(x)=.
(1)求曲线y=f(x)在点(0,﹣1)处的切线方程;
(2)证明:当a≥1时,f(x)+e≥0.
23.已知函数f(x)=ex﹣ax2.
(1)若a=1,证明:当x≥0时,f(x)≥1;
(2)若f(x)在(0,+∞)只有一个零点,求a.
24.已知函数f(x)=﹣lnx.
(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8﹣8ln2;
(Ⅱ)若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.
25.已知函数f(x)=x3﹣a(x2+x+1).
(1)若a=3,求f(x)的单调区间;
(2)证明:f(x)只有一个零点.
26.已知函数f(x)=﹣x+alnx.
(1)讨论f(x)的单调性;
(2)若f(x)存在两个极值点x1,x2,证明:<a﹣2.
27.已知函数f(x)=ax3﹣3(a+1)x2+12x.
(1)当a>0时,求f(x)的极小值;
(Ⅱ)当a≤0时,讨论方程f(x)=0实根的个数.
28.已知函数f(x)=ex(ex﹣a)﹣a2x.
(1)讨论f(x)的单调性;
(2)若f(x)≥0,求a的取值范围.
29.设函数f(x)=(1﹣x2)ex.
(1)讨论f(x)的单调性;
(2)当x≥0时,f(x)≤ax+1,求a的取值范围.
30.已知函数f(x)=excosx﹣x.
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)在区间[0,]上的最大值和最小值.
31.已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.
(1)求a;
(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.
32.已知函数f(x)=lnx+ax2+(2a+1)x.
(1)讨论f(x)的单调性;
(2)当a<0时,证明f(x)≤﹣﹣2.
33.已知函数f(x)=ae2x+(a﹣2)ex﹣x.
(1)讨论f(x)的单调性;
(2)若f(x)有两个零点,求a的取值范围.
34.已知函数f(x)=x﹣1﹣alnx.
(1)若f(x)≥0,求a的值;
(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.
35.已知函数f(x)=x3﹣ax2,a∈R,
(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;
(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.
36.已知函数f(x)=(x+1)lnx﹣a(x﹣1).
(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;
(II)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.
37.(Ⅰ)讨论函数f(x)=ex的单调性,并证明当x>0时,(x﹣2)ex+x+2>0;
(Ⅱ)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.
38.已知函数f(x)=(x﹣2)ex+a(x﹣1)2有两个零点.
(Ⅰ)求a的取值范围;
(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.
39.已知函数f(x)=(x﹣2)ex+a(x﹣1)2.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若f(x)有两个零点,求a的取值范围.
40.已知函数f(x)=x3+ax+,g(x)=﹣lnx
(i)当a为何值时,x轴为曲线y=f(x)的切线;
(ii)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.
高考数学真题分项汇编(2014-2023) 专题05 导数选择、填空(理科)(全国通用)(原卷版): 这是一份高考数学真题分项汇编(2014-2023) 专题05 导数选择、填空(理科)(全国通用)(原卷版),共30页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
高考数学二轮复习专题12 导数(文科)解答题30题(2份打包,原卷版+教师版): 这是一份高考数学二轮复习专题12 导数(文科)解答题30题(2份打包,原卷版+教师版),文件包含高考数学二轮复习专题12导数文科解答题30题教师版docx、高考数学二轮复习专题12导数文科解答题30题学生版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
高考数学二轮复习专题11 导数(理科)解答题30题(2份打包,原卷版+教师版): 这是一份高考数学二轮复习专题11 导数(理科)解答题30题(2份打包,原卷版+教师版),文件包含高考数学二轮复习专题11导数理科解答题30题教师版docx、高考数学二轮复习专题11导数理科解答题30题学生版docx等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。