人教版新课标A必修33.2.1古典概型随堂练习题
展开古 典 概 型
(20分钟 35分)
1.下列试验中,是古典概型的为 ( )
A.种下一粒花生,观察它是否发芽
B.向正方形ABCD内,任意投掷一点P,观察点P是否与正方形的中心O重合
C.从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率
D.在区间内任取一点,求此点小于2的概率
【解析】选C.对于A,发芽与不发芽的概率一般不相等,不满足等可能性;对于B,正方形内点的个数有无限多个,不满足有限性;对于C,满足有限性和等可能性,是古典概型;对于D,区间内的点有无限多个,不满足有限性.
2.一个家庭中有两个小孩,这两个小孩都为女孩的概率为 ( )
A. B. C. D.
【解析】选C.两个小孩共有四种情况:(男,女),(女,男),(女,女),(男,男),基本事件总数为4,两个小孩都为女孩的概率为.
3.四条线段的长度分别是1,3,5,7,从这四条线段中任取三条,则所取出的三条线段能构成一个三角形的概率是 ( )
A. B. C. D.
【解析】选A.从四条长度各异的线段中任取一条,每条被取出的可能性均相等,所以该问题属于古典概型.又所有基本事件包括(1,3,5),(1,3,7),(1,5,7),(3,5,7)四种,而能构成三角形的基本事件只有(3,5,7)一种,所以所取出的三条线段能构成一个三角形的概率是P=.
4.设a是抛掷一枚骰子得到的点数,则方程x2+ax+2=0有两个不相等的实根的概率为 ( )
A. B. C. D.
【解析】选A.基本事件总数为6,若方程有两个不相等的实根,则a2-8>0,满足上述条件的a为3,4,5,6,故概率为=.
5.从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是______.
【解析】从1,2,3,6这4个数中一次随机地取2个数,共有(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),共6种结果,所取两个数积为6的有(1,6),(2,3),共2种结果,故概率为.
答案:
6.一个口袋内装有大小相同的5个球,其中3个白球,2个黑球,从中一次摸出2个球.
(1)共有多少个基本事件?
(2)摸出的2个球都是白球的概率是多少?
【解析】(1)分别记白球为1,2,3号,黑球为4,5号,从中摸出2个球,有如下基本事件(摸到1,2号球用(1,2)表示):(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).
因此,共有10个基本事件.
(2)上述10个基本事件发生的可能性相同,且只有3个基本事件是摸到两个白球(记为事件A),即(1,2),(1,3),(2,3),故P(A)=.故摸出2个球都是白球的概率为.
(30分钟 60分)
一、选择题(每小题5分,共25分)
1.随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则 ( )
A.p1<p2<p3 B.p2<p1<p3
C.p1<p3<p2 D.p3<p1<p2
【解析】选C.列表得:
(1,6) | (2,6) | (3,6) | (4,6) | (5,6) | (6,6) |
(1,5) | (2,5) | (3,5) | (4,5) | (5,5) | (6,5) |
(1,4) | (2,4) | (3,4) | (4,4) | (5,4) | (6,4) |
(1,3) | (2,3) | (3,3) | (4,3) | (5,3) | (6,3) |
(1,2) | (2,2) | (3,2) | (4,2) | (5,2) | (6,2) |
(1,1) | (2,1) | (3,1) | (4,1) | (5,1) | (6,1) |
所以一共有36种等可能的结果,两个骰子点数之和不超过5的有10种情况,点数之和大于5的有26种情况,点数之和为偶数的有18种情况,所以向上的点数之和不超过5的概率p1==,点数之和大于5的概率p2==,点数之和为偶数的概率记为p3==.
2.甲、乙两枚质地均匀的骰子先后各抛一次,a,b分别表示抛掷甲、乙两枚骰子所出现的点数,当点P(a,b)落在直线x+y=m(m为常数)上的概率最大时,则m的值为 ( )
A.6 B.5 C.7 D.8
【解析】选C.甲、乙两枚骰子先后各抛一次,a,b分别表示抛掷甲、乙两枚骰子所出现的点数,基本事件总数为n=6×6=36,
当点P(a,b)落在直线x+y=m(m为常数)上,
所以易求得m=2时,点P(a,b)落在直线x+y=m(m为常数)上的概率为,
m=3时,概率为,m=4时,概率为,
m=5时,概率为,m=6时,概率为,
m=7时,概率为,m=8时,概率为,
m=9时,概率为,m=10时,概率为,
m=11时,概率为,m=12时,概率为.
所以当点P(a,b)落在直线x+y=m(m为常数)上的概率最大时,m的值为7.
3.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率
为 ( )
A. B. C. D.
【解析】选C.选取两支彩笔的方法有10种,含有红色彩笔的选法有4种,由古典概型的概率公式知,满足题意的概率P==.
4.若以连续掷两颗骰子分别得到的点数m,n作为点P的横、纵坐标,则点P落在圆x2+y2=9内的概率为 ( )
A. B. C. D.
【解析】选D.掷骰子共有6×6=36(种)可能的情况,而落在x2+y2=9内的情况有:(1,1),(1,2),(2,1),(2,2),共4种,故所求概率P==.
5.一次掷两枚骰子,得到的点数为m和n,则关于x的方程x2+(m+n)x+4=0有实数根的概率是 ( )
A. B. C. D.
【解析】选A.基本事件共有36个.因为方程有实根,所以Δ=(m+n)2-16≥0.所以m+n≥4,其对立事件是m+n<4,其中有:(1,1),(1,2),(2,1),共3个基本事件.所以所求概率为1-=.
二、填空题(每小题5分,共15分)
6.从2,3,8,9中任取两个不同的数字,分别记为a,b,则loga b为整数的概率为______.
【解析】从2,3,8,9中任取2个不同的数字,分别记为(a,b),则有(2,3),(3,2),(2,8),(8,2),(2,9),(9,2),(3,8),(8,3),(3,9),(9,3),(8,9),(9,8),共有12种情况,其中符合loga b为整数的有log3 9和log2 8两种情况,所以P==.
答案:
7.将一枚质地均匀的一元硬币抛3次,恰好出现一次正面的概率是______.
【解析】试验共有8个结果:(正,正,正),(反,正,正),(正,反,正),(正,正,反),(反,反,正),(反,正,反),(正,反,反),(反,反,反),其中恰好出现一次正面的结果有3个,故所求的概率是.
答案:
8.在1,2,3,4四个数中,可重复地选取两个数,其中一个数是另一个数的2倍的概率是______.
【解析】用列举法知,可重复地选取两个数共有16种可能,其中一个数是另一个数的2倍的有1,2;2,1;2,4;4,2共4种,故所求的概率为=.
答案:
三、解答题(每小题10分,共20分)
9.做投掷2颗骰子的试验,用(x,y)表示结果,其中x表示第一颗骰子出现的点数,y表示第2颗骰子出现的点数,写出:
(1)试验的基本事件;
(2)事件“出现点数之和大于8”;
(3)事件“出现点数相等”;
(4)事件“出现点数之和等于7”.
【解析】(1)这个试验的基本事件共有36个,列举如下:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).
(2)“出现点数之和大于8”包含以下10个基本事件:(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6).
(3)“出现点数相等”包含以下6个基本事件:(1,1),(2,2),(3,3),(4,4),(5,5),(6,6).
(4)“出现点数之和等于7”包含以下6个基本事件:(1,6),(2,5),(3,4),(4,3),(5,2),(6,1).
10.某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:
①若xy≤3,则奖励玩具一个;
②若xy≥8,则奖励水杯一个;
③其余情况奖励饮料一瓶.
假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动.
(1)求小亮获得玩具的概率;
(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.
【解析】(1)用数对(x,y)表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.因为S中元素的个数是16.所以基本事件总数n=16.记“xy≤3”为事件A,则事件A包含的基本事件共5个,
即(1,1),(1,2),(1,3),(2,1),(3,1),
所以P(A)=,即小亮获得玩具的概率为.
(2)记“xy≥8”为事件B,“3<xy<8”为事件C.
则事件B包含的基本事件共6个.
即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4).
所以P(B)==.事件C包含的基本事件共5个,
即(1,4),(2,2),(2,3),(3,2),(4,1).
所以P(C)=.因为>,
所以小亮获得水杯的概率大于获得饮料的概率.
1.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率
是 ( )
A. B. C. D.
【解析】选D.个位数与十位数之和为奇数,则个位数与十位数中必有一个奇数一个偶数,所以可以分两类:
(1)当个位为奇数时,有5×4=20(个)符合条件的两位数.
(2)当个位为偶数时,有5×5=25(个)符合条件的两位数.
因此共有20+25=45(个)符合条件的两位数,其中个位数为0的两位数有5个,
所以所求概率为P==.
2.某观赏鱼池塘中养殖大量的红鲫鱼与金鱼,为了估计池中两种鱼数量情况,养殖人员从池中捕出红鲫鱼和金鱼各1 000条,并给每条鱼作上不影响其存活的记号,然后放回池内,经过一段时间后,再从池中随机捕出1 000条鱼,分别记录下其中有记号的鱼数目,再放回池中,这样的记录作了10次,将记录数据制成如图所示的茎叶图.
(1)根据茎叶图分别计算有记号的两种鱼的平均数,并估计池塘中两种鱼的数量.
(2)随机从池塘中逐条有放回地捕出3条鱼,求恰好是1条金鱼2条红鲫鱼的概率.
【解析】(1)由茎叶图可求得有记号的红鲫鱼数目的平均数为20(条);有记号的金鱼数目的平均数为20(条).由于有记号的两种鱼数目的平均数均为20(条),故可认为池中两种鱼的数目相同,设池中两种鱼的总数目为x条,则有=,解得x=50 000,因此可估计池中的红鲫鱼与金鱼的数量均为25 000条.
(2)由于是用随机逐条有放回地捕出3条鱼,每一条鱼被捕到的概率相同,用x表示捕到的是红鲫鱼,y表示捕到的是金鱼,基本事件总数有8种(x,x,x),(x,x,y),(x,y,x),(y,x,x),(x,y,y),(y,x,y),(y,y,x),(y,y,y),恰好是1条金鱼,2条红鲫鱼的基本事件有3个,故所求概率为P=.
人教版新课标A必修33.2.2随机数的产生练习: 这是一份人教版新课标A必修33.2.2随机数的产生练习,共7页。试卷主要包含了2B等内容,欢迎下载使用。
高中数学人教版新课标A必修33.1.3概率的基本性质课后复习题: 这是一份高中数学人教版新课标A必修33.1.3概率的基本性质课后复习题,共7页。试卷主要包含了02+0等内容,欢迎下载使用。
数学必修33.3.1几何概型练习题: 这是一份数学必修33.3.1几何概型练习题,共10页。试卷主要包含了005等内容,欢迎下载使用。