2021年中考数学一轮复习《二次函数》基础练习卷(含答案)
展开一、选择题
已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为( )
A.﹣2 B.﹣4 C.2 D.4
将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( )
A.y=2(x+2)2+3 B.y=2(x﹣2)2+3 C.y=2(x﹣2)2﹣3 D.y=2(x+2)2﹣3
下列命题是假命题的是( )
A.函数y=3x+5的图象可以看作由函数y=3x﹣1的图象向上平移6个单位长度而得到
B.抛物线y=x2﹣3x﹣4与x轴有两个交点
C.对角线互相垂直且相等的四边形是正方形
D.垂直于弦的直径平分这条弦
关于二次函数y=-2x2+1的图象,下列说法中,正确的是 ( )
A.对称轴为直线x=1
B.顶点坐标为(-2,1)
C.可以由二次函数y=-2x2的图象向左平移1个单位长度得到
D.在y轴的左侧,图象上升,在y轴的右侧,图象下降
已知点(x1,y1)(x2,y2)在抛物线y=(x﹣h)2+k上,如果x1<x2<h,则y1,y2,k的大小关系是( )
A.y1<y2<k B.y2<y1<k C.k<y1<y2 D.k<y2<y1
已知二次函数y=3(x﹣2)2+5,则有( )
A.当x>﹣2时,y随x的增大而减小
B.当x>﹣2时,y随x的增大而增大
C.当x>2时,y随x的增大而减小
D.当x>2时,y随x的增大而增大
二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1.
下列结论:①ab<0;②b2>4ac③a+b+c<0;④2a+b+c=0,其中正确的是( )
A.①④ B.②④ C.①②③ D.①②③④
从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.
下列结论:
①小球在空中经过的路程是40m;
②小球抛出3秒后,速度越来越快;
③小球抛出3秒时速度为0;
④小球的高度h=30m时,t=1.5s.
其中正确的是( )
A.①④ B.①② C.②③④ D.②③
生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间的函数关系式为y=-n2+14n-24,则该企业一年中应停产的月份是( )
A.1月、2月、3月 B.2月、3月、4月
C.1月、2月、12月 D.1月、11月、12月
已知学校航模组设计制作的火箭的升空高度 h(m)与飞行时间 t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是( )
A.点火后 9s 和点火后 13s 的升空高度相同
B.点火后 24s 火箭落于地面
C.点火后 10s 的升空高度为 139m
D.火箭升空的最大高度为 145m
如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣.
结合图象分析下列结论:
①abc>0;
②3a+c>0;
③当x<0时,y随x的增大而增大;
④一元二次方程cx2+bx+a=0的两根分别为x1=﹣,x2=;
⑤<0;
⑥若m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,则m<﹣3且n>2,
其中正确的结论有( )
A.3个 B.4个 C.5个 D.6个
在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示.
现给以下结论:
①abc<0;
②c+2a<0;
③9a﹣3b+c=0;
④a﹣b≥m(am+b)(m为实数);
⑤4ac﹣b2<0.
其中错误结论的个数有( )
A.1个 B.2个 C.3个 D.4个
二、填空题
二次函数y=﹣(x﹣6)2+8的最大值是 .
将抛物线y=(x﹣3)2﹣2向左平移 个单位后经过点A(2,2).
根据图中的抛物线可以判断:当x 时,y随x的增大而减小;当x= 时,y有最小值.
抛物线y=(k-1)x2-x+1与x轴有交点,则k的取值范围是_______________.
某隧道横截面由抛物线与矩形的三边组成,尺寸如图所示.以隧道横截面抛物线的顶点为原点,以抛物线的对称轴为y轴,建立直角坐标系,求得该抛物线对应的函数关系式为 .
某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图),已知计划中的建筑材料可建墙的总长度为48 m,则这三间长方形种牛饲养室的总占地面积的最大值为 m2.
三、解答题
如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A(3,0)、点B(﹣1,0),与y轴交于点C.
(1)求拋物线的解析式;
(2)过点D(0,3)作直线MN∥x轴,点P在直线NN上且S△PAC=S△DBC,直接写出点P的坐标.
如图,一次函数y=x+k图象过点A(1,0),交y轴于点B,C为y轴负半轴上一点,且2OB=BC,过A,C两点的抛物线交直线AB于点D,且CD∥x轴.
(1)求这条抛物线的解析式;
(2)直接写出使一次函数值小于二次函数值时x的取值范围.
已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,﹣3).
(1)求抛物线的解析式和顶点坐标;
(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=﹣x上,并写出平移后抛物线的解析式.
二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值如下表:
根据表格中的信息,完成下列各题
(1)当x=3时,y=
(2)当x为何值时,y=0?
(3)①若自变量x的取值范围是0≤x≤5,求函数值y的取值范围;
②若函数值y为正数,则自变量x的取值范围.
手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm,菱形的面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化.
(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)当x是多少时,菱形风筝面积S最大?最大面积是多少?
某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x天的生产成本y(元/件)与x(天)之间的关系如图所示,第x天该产品的生产量z(件)与x(天)满足关系式z=﹣2x+120.
(1)第40天,该厂生产该产品的利润是 元;
(2)设第x天该厂生产该产品的利润为w元.
①求w与x之间的函数关系式,并指出第几天的利润最大,最大利润是多少?
②在生产该产品的过程中,当天利润不低于2400元的共有多少天?
如图,抛物线的顶点M在x轴上,抛物线与y轴交于点N,且OM=ON=4,矩形ABCD的顶点A、B在抛物线上,C、D在x轴上.
(1)求抛物线的解析式;
(2)设点A的横坐标为t(t>4),矩形ABCD的周长为l,求l与t之间函数关系式.
\s 0 参考答案
答案为:B.
答案为:B.
答案为:C.
答案为:D
答案为:D
答案为:D.
答案为:C
答案为:D.
答案为:C;
答案为:D.
答案为:C.
解析:∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣
∴抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),且a=b
由图象知:a<0,c>0,b<0∴abc>0故结论①正确;
∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)∴9a﹣3b+c=0
∵a=b∴c=﹣6a∴3a+c=﹣3a>0故结论②正确;
∵当x<﹣时,y随x的增大而增大;当﹣<x<0时,y随x的增大而减小
∴结论③错误;
∵cx2+bx+a=0,c>0∴x2+x+1=0
∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0)
∴ax2+bx+c=0的两根是﹣3和2∴=1,=﹣6
∴x2+x+1=0即为:﹣6x2+x+1=0,解得x1=﹣,x2=;故结论④正确;
∵当x=﹣时,y=>0∴<0故结论⑤正确;
∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),
∴y=ax2+bx+c=a(x+3)(x﹣2)
∵m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根
∴m,n(m<n)为方程a(x+3)(x﹣2)=﹣3的两个根
∴m,n(m<n)为函数y=a(x+3)(x﹣2)与直线y=﹣3的两个交点的横坐标
结合图象得:m<﹣3且n>2
故结论⑥成立;
答案为:A.
答案为:8.
答案为:3.
答案为:<1;=1.
答案为:k≤1.25且k≠1.
答案为:y=-eq \f(1,3)x2.
答案为:144m2.
解:
(1)将点A(3,0)、点B(﹣1,0)代入y=x2+bx+c,可得b=﹣2,c=﹣3,∴y=x2﹣2x﹣3;
(2)∵C(0,﹣3),∴S△DBC=6×1=3,∴S△PAC=3,
设P(x,3),直线CP与x轴交点为Q,则S△PAC=6×AQ,∴AQ=1,
∴Q(2,0)或Q(4,0),∴直线CQ为y=x﹣3或y=x﹣3,当y=3时,x=4或x=8,
∴P(4,3)或P(8,3);
解:(1)把A(1,0)代入y=x+k中,得k=﹣1,
∴一次函数解析式为y=x﹣1,
令x=0,得点B坐标为(0,﹣1),
∵OB=BC,OB=1,
∴BC=2,
∴OC=3,
∴C点坐标为(0,﹣3),
又∵CD∥x轴,
∴点D的纵坐标为﹣3,
当y=﹣3时,x﹣1=﹣3,解得x=﹣2,
∴点D的坐标为(﹣2,﹣3),
设抛物线解析式为y=ax2+bx+c,
将A(1,0),C(0,﹣3),D(﹣2,﹣3)代入,
得,解得,
∴抛物线的解析式为:y=x2+2x﹣3;
(2)∵直线与抛物线交于D(﹣2,﹣3),A(1,0)两点,抛物线开口向上,
∴当x<﹣2或x>1时,一次函数值小于二次函数值.
解:(1)∵抛物线与x轴交于点A(1,0),B(3,0),
可设抛物线解析式为y=a(x﹣1)(x﹣3),
把C(0,﹣3)代入得:3a=﹣3,解得:a=﹣1,
故抛物线解析式为y=﹣(x﹣1)(x﹣3),即y=﹣x2+4x﹣3,
∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴顶点坐标(2,1);
(2)先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y=﹣x2,平移后抛物线的顶点为(0,0)落在直线y=﹣x上(答案不唯一).
解:(1)从表格看出,函数的对称轴为x=1,顶点为(1,﹣2),
故x=3时,y=﹣1,故:答案是﹣1;
(2)把顶点坐标代入二次函数顶点式表达式得:y=a(x﹣1)2﹣2,
把点(﹣1,﹣1)代入上式得:﹣1=a(﹣1﹣1)2﹣2,解得:a=0.25,
则函数表达式为:y=0.25(x﹣1)2﹣2,令y=0,则x=1±2 SKIPIF 1 < 0 ;
(3)①当0≤x≤5,函数在顶点处取得最小值,y=﹣2,
当x=5时,函数取得最大值y=0.25(5﹣1)2﹣2=2,
即:函数值y的取值范围为:﹣2≤x≤2;
②若函数值y为正数,则x<1﹣2 SKIPIF 1 < 0 或x>1+2 SKIPIF 1 < 0 .
解:(1)S=-eq \f(1,2)x2+30x.
(2)∵S=-eq \f(1,2)x2+30x=-eq \f(1,2)(x-30)2+450,
且-eq \f(1,2)<0,∴当x=30时,S有最大值,最大值为450.
即当x为30 cm时,菱形风筝的面积最大,最大面积是450 cm2.
解:
(1)由图象可知,第40天时的成本为40元,此时的产量为z=﹣2×40+120=40
则第40天的利润为:(80﹣40)×40=1600元.故答案为1600
(2)①;设直线AB的解析式为y=kx+b(k≠0),把(0,70)(30,40)代入得
,解得∴直线AB的解析式为y=﹣x+70
(Ⅰ)当0<x≤30时
w=[80﹣(﹣x+70)](﹣2x+120)=﹣2x2+100x+1200=﹣2(x﹣25)2+2450
∴当x=25时,w最大值=2450
(Ⅱ)当30<x≤50时,w=(80﹣40)×(﹣2x+120)=﹣80x+4800
∵w随x的增大而减小∴当x=31时,w最大值=2320
∴
第25天的利润最大,最大利润为2450元
②(Ⅰ)当0<x≤30时,令﹣2(x﹣25)2+2450=2400元,解得x1=20,x2=30
∵抛物线w=﹣2(x﹣25)2+2450开口向下
由其图象可知,当20≤x≤30时,w≥2400
此时,当天利润不低于2400元的天数为:30﹣20+1=11天
(Ⅱ)当30<x≤50时,由①可知当天利润均低于2400元
综上所述,当天利润不低于2400元的共有11天.
解:(1)∵OM=ON=4,
∴M点坐标为(4,0),N点坐标为(0,4),
设抛物线解析式为y=a(x﹣4)2,
把N(0,4)代入得16a=4,解得a=,
所以抛物线的解析式为y=(x﹣4)2=x2﹣2x+4;
(2)∵点A的横坐标为t,∴DM=t﹣4,
∴CD=2DM=2(t﹣4)=2t﹣8,
把x=t代入y=x2﹣2x+4得y=t2﹣2t+4,
∴AD=t2﹣2t+4,
∴l=2(AD+CD)=2(t2﹣2t+4+2t﹣8)=t2﹣8(t>4).
迎战2022年(通用版)中考数学一轮复习基础过关训练卷:二次函数(含答案): 这是一份迎战2022年(通用版)中考数学一轮复习基础过关训练卷:二次函数(含答案),共17页。试卷主要包含了将抛物线y=,定义等内容,欢迎下载使用。
中考数学一轮复习《二次根式》基础练习卷(含答案).doc: 这是一份中考数学一轮复习《二次根式》基础练习卷(含答案).doc,共4页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
中考数学一轮复习《概率初步》基础练习卷(含答案).doc: 这是一份中考数学一轮复习《概率初步》基础练习卷(含答案).doc,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。