搜索
    上传资料 赚现金
    2017年杭州市中考数学试卷及答案(word版)
    立即下载
    加入资料篮
    2017年杭州市中考数学试卷及答案(word版)01
    2017年杭州市中考数学试卷及答案(word版)02
    2017年杭州市中考数学试卷及答案(word版)03
    还剩27页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2017年杭州市中考数学试卷及答案(word版)

    展开
    这是一份2017年杭州市中考数学试卷及答案(word版),共30页。

    2017年浙江省杭州市中考数学试卷
    一.选择题
    1.(3分)﹣22=(  )
    A.﹣2 B.﹣4 C.2 D.4
    2.(3分)太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为(  )
    A.1.5×108 B.1.5×109 C.0.15×109 D.15×107
    3.(3分)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则(  )
    A. B. C. D.
    4.(3分)|1+|+|1﹣|=(  )
    A.1 B. C.2 D.2
    5.(3分)设x,y,c是实数,(  )
    A.若x=y,则x+c=y﹣c B.若x=y,则xc=yc
    C.若x=y,则 D.若,则2x=3y
    6.(3分)若x+5>0,则(  )
    A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<12
    7.(3分)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则(  )
    A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8
    C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.8
    8.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的地面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则(  )

    A.l1:l2=1:2,S1:S2=1:2 B.l1:l2=1:4,S1:S2=1:2
    C.l1:l2=1:2,S1:S2=1:4 D.l1:l2=1:4,S1:S2=1:4
    9.(3分)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,(  )
    A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0
    C.若m<1,则(m﹣1)a+b>0 D.若m<1,则(m﹣1)a+b<0
    10.(3分)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则(  )

    A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21
     
    二.填空题
    11.(4分)数据2,2,3,4,5的中位数是   .
    12.(4分)如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=   .

    13.(4分)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是   .
    14.(4分)若•|m|=,则m=   .
    15.(4分)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于   .

    16.(4分)某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉   千克.(用含t的代数式表示.)
     
    三.解答题
    17.(6分)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).
    某校九年级50名学生跳高测试成绩的频数表
    组别(m)
    频数
    1.09~1.19
    8
    1.19~1.29
    12
    1.29~1.39
    A
    1.39~1.49
    10
    (1)求a的值,并把频数直方图补充完整;
    (2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.

    18.(8分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).
    (1)当﹣2<x≤3时,求y的取值范围;
    (2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.
    19.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.
    (1)求证:△ADE∽△ABC;
    (2)若AD=3,AB=5,求的值.
    20.(10分)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.
    (1)设矩形的相邻两边长分别为x,y.
    ①求y关于x的函数表达式;
    ②当y≥3时,求x的取值范围;
    (2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?
    21.(10分)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.
    (1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;
    (2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.

    22.(12分)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.
    (1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;
    (2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;
    (3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.
    23.(12分)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,
    (1)点点同学通过画图和测量得到以下近似数据:
    ɑ
    30°
    40°
    50°
    60°
    β
    120°
    130°
    140°
    150°
    γ
    150°
    140°
    130°
    120°
    猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:
    (2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.

     

    2017年浙江省杭州市中考数学试卷
    参考答案与试题解析
     
    一.选择题
    1.(3分)(2017•杭州)﹣22=(  )
    A.﹣2 B.﹣4 C.2 D.4
    【分析】根据幂的乘方的运算法则求解.
    【解答】解:﹣22=﹣4,
    故选B.
    【点评】本题考查了幂的乘方,解答本题的关键是掌握幂的乘方的运算法则.
     
    2.(3分)(2017•杭州)太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为(  )
    A.1.5×108 B.1.5×109 C.0.15×109 D.15×107
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【解答】解:将150 000 000用科学记数法表示为:1.5×108.
    故选A.
    【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
     
    3.(3分)(2017•杭州)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则(  )

    A. B. C. D.
    【分析】根据题意得出△ADE∽△ABC,进而利用已知得出对应边的比值.
    【解答】解:∵DE∥BC,
    ∴△ADE∽△ABC,
    ∵BD=2AD,
    ∴===,
    则=,
    ∴A,C,D选项错误,B选项正确,
    故选:B.
    【点评】此题主要考查了相似三角形的判定与性质,正确得出对应边的比是解题关键.
     
    4.(3分)(2017•杭州)|1+|+|1﹣|=(  )
    A.1 B. C.2 D.2
    【分析】根据绝对值的性质,可得答案.
    【解答】解:原式1++﹣1=2,
    故选:D.
    【点评】本题考查了实数的性质,利用差的绝对值是大数减小数是解题关键.
     
    5.(3分)(2017•杭州)设x,y,c是实数,(  )
    A.若x=y,则x+c=y﹣c B.若x=y,则xc=yc
    C.若x=y,则 D.若,则2x=3y
    【分析】根据等式的性质,可得答案.
    【解答】解:A、两边加不同的数,故A不符合题意;
    B、两边都乘以c,故B符合题意;
    C、c=0时,两边都除以c无意义,故C不符合题意;
    D、两边乘以不同的数,故D不符合题意;
    故选:B.
    【点评】本题考查了等式的性质,熟记等式的性质并根据等式的性质求解是解题关.
     
    6.(3分)(2017•杭州)若x+5>0,则(  )
    A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<12
    【分析】求出已知不等式的解集,再求出每个选项中不等式的解集,即得出选项.
    【解答】解:∵x+5>0,
    ∴x>﹣5,
    A、根据x+1<0得出x<﹣1,故本选项不符合题意;
    B、根据x﹣1<0得出x<1,故本选项不符合题意;
    C、根据<﹣1得出x<﹣5,故本选项不符合题意;
    D、根据﹣2x<12得出x>﹣6,故本选项符合题意;
    故选D.
    【点评】本题考查了不等式的性质,能正确根据不等式的性质进行变形是解此题的关键.
     
    7.(3分)(2017•杭州)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则(  )
    A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8
    C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.8
    【分析】设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次×(1+增长率)2=16.8万人次,根据等量关系列出方程即可.
    【解答】解:设参观人次的平均年增长率为x,由题意得:
    10.8(1+x)2=16.8,
    故选:C.
    【点评】本题主要考查了由实际问题抽象出一元二次方程,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
     
    8.(3分)(2017•杭州)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的地面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则(  )

    A.l1:l2=1:2,S1:S2=1:2 B.l1:l2=1:4,S1:S2=1:2
    C.l1:l2=1:2,S1:S2=1:4 D.l1:l2=1:4,S1:S2=1:4
    【分析】根据圆的周长分别计算l1,l2,再由扇形的面积公式计算S1,S2,求比值即可.
    【解答】解:∵l1=2π×BC=2π,
    l2=2π×AB=4π,
    ∴l1:l2=1:2,
    ∵S1=×2π×=π,
    S2=×4π×=2π,
    ∴S1:S2=1:2,
    故选A.
    【点评】本题考查了圆锥的计算,主要利用了圆的周长为2πr,侧面积=lr求解是解题的关键.
     
    9.(3分)(2017•杭州)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,(  )
    A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0
    C.若m<1,则(m﹣1)a+b>0 D.若m<1,则(m﹣1)a+b<0
    【分析】根据对称轴,可得b=﹣2a,根据有理数的乘法,可得答案.
    【解答】解:由对称轴,得
    b=﹣2a.
    (m﹣1)a+b=ma﹣a﹣2a=(m﹣3)a
    当m<1时,(m﹣3)a>0,
    故选:C.
    【点评】本题考查了二次函数图象与系数的关系,利用对称轴得出b=﹣2a是解题关键.
     
    10.(3分)(2017•杭州)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则(  )

    A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21
    【分析】过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,根据线段垂直平分线求出DE=BD=x,根据等腰三角形求出BD=DC=6,求出CM=DM=3,解直角三角形求出EM=3y,AQ=6y,在Rt△DEM中,根据勾股定理求出即可.
    【解答】解:
    过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,
    ∵BE的垂直平分线交BC于D,BD=x,
    ∴BD=DE=x,
    ∵AB=AC,BC=12,tan∠ACB=y,
    ∴==y,BQ=CQ=6,
    ∴AQ=6y,
    ∵AQ⊥BC,EM⊥BC,
    ∴AQ∥EM,
    ∵E为AC中点,
    ∴CM=QM=CQ=3,
    ∴EM=3y,
    ∴DM=12﹣3﹣x=9﹣x,
    在Rt△EDM中,由勾股定理得:x2=(3y)2+(9﹣x)2,
    即2x﹣y2=9,
    故选B.
    【点评】本题考查了线段垂直平分线性质,等腰三角形的性质,勾股定理,解直角三角形等知识点,能正确作出辅助线是解此题的关键.
     
    二.填空题
    11.(4分)(2017•杭州)数据2,2,3,4,5的中位数是 3 .
    【分析】根据中位数的定义即中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,即可求出答案.
    【解答】解:从小到大排列为:2,2,3,4,5,
    位于最中间的数是3,
    则这组数的中位数是3.
    故答案为:3.
    【点评】本题考查了中位数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
     
    12.(4分)(2017•杭州)如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB= 50° .

    【分析】根据切线的性质即可求出答案.
    【解答】解:∵AT切⊙O于点A,AB是⊙O的直径,
    ∴∠BAT=90°,
    ∵∠ABT=40°,
    ∴∠ATB=50°,
    故答案为:50°
    【点评】本题考查切线的性质,解题的关键是根据切线的性质求出∠ATB=90°,本题属于基础题型.
     
    13.(4分)(2017•杭州)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是  .
    【分析】根据题意画出相应的树状图,找出所有可能的情况个数,进而找出两次都是红球的情况个数,即可求出所求的概率大小.
    【解答】解:根据题意画出相应的树状图,

    所以一共有9种情况,两次摸到红球的有4种情况,
    ∴两次摸出都是红球的概率是,
    故答案为:.
    【点评】此题考查了列表法与树状图,根据题意画出相应的树状图是解本题的关键.
     
    14.(4分)(2017•杭州)若•|m|=,则m= 3或﹣1 .
    【分析】利用绝对值和分式的性质可得m﹣1≠0,m﹣3=0或|m|=1,可得m.
    【解答】解:由题意得,
    m﹣1≠0,
    则m≠1,
    (m﹣3)•|m|=m﹣3,
    ∴(m﹣3)•(|m|﹣1)=0,
    ∴m=3或m=±1,
    ∵m≠1,
    ∴m=3或m=﹣1,
    故答案为:3或﹣1.
    【点评】本题主要考查了绝对值和分式的性质,熟记分式分母不为0是解答此题的关键.
     
    15.(4分)(2017•杭州)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于 78 .

    【分析】由勾股定理求出BC==25,求出△ABC的面积=150,证明△CDE∽△CBA,得出,求出CE=12,得出BE=BC﹣CE=13,再由三角形的面积关系即可得出答案.
    【解答】解:∵在Rt△ABC中,∠BAC=90°,AB=15,AC=20,
    ∴BC==25,△ABC的面积=AB•AC=×15×20=150,
    ∵AD=5,
    ∴CD=AC﹣AD=15,
    ∵DE⊥BC,
    ∴∠DEC=∠BAC=90°,
    又∵∠C=∠C,
    ∴△CDE∽△CBA,
    ∴,即,
    解得:CE=12,
    ∴BE=BC﹣CE=13,
    ∵△ABE的面积:△ABC的面积=BE:BC=13:25,
    ∴△ABE的面积=×150=78;
    故答案为:78.
    【点评】本题考查了相似三角形的判定与性质、勾股定理、三角形的面积;熟练掌握勾股定理,证明三角形相似是解决问题的关键
     
    16.(4分)(2017•杭州)某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉 30﹣ 千克.(用含t的代数式表示.)
    【分析】设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程,求出x即可.
    【解答】解:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,
    根据题意,得:9(50﹣t﹣x)+6t+3x=270,
    则x==30﹣,
    故答案为:30﹣.
    【点评】本题主要考查列代数式的能力,解题的关键是理解题意,抓住相等关系列出方程,从而表示出第三天销售香蕉的千克数.
     
    三.解答题
    17.(6分)(2017•杭州)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).
    某校九年级50名学生跳高测试成绩的频数表
    组别(m)
    频数
    1.09~1.19
    8
    1.19~1.29
    12
    1.29~1.39
    A
    1.39~1.49
    10
    (1)求a的值,并把频数直方图补充完整;
    (2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.

    【分析】(1)利用总人数50减去其它组的人数即可求得a的值;
    (2)利用总人数乘以对应的比例即可求解.
    【解答】解:(1)a=50﹣8﹣12﹣10=20,

    (2)该年级学生跳高成绩在1.29m(含1.29m)以上的人数是:500×=300(人).
    【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了样本估计总体.
     
    18.(8分)(2017•杭州)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).
    (1)当﹣2<x≤3时,求y的取值范围;
    (2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.
    【分析】利用待定系数法求一次函数解析式得出即可;
    (1)利用一次函数增减性得出即可.
    (2)根据题意得出n=﹣2m+2,联立方程,解方程即可求得.
    【解答】解:设解析式为:y=kx+b,
    将(1,0),(0,﹣2)代入得:,
    解得:,
    ∴这个函数的解析式为:y=﹣2x+2;
    (1)把x=﹣2代入y=﹣2x+2得,y=6,
    把x=3代入y=﹣2x+2得,y=﹣4,
    ∴y的取值范围是﹣4≤y<6.
    (2)∵点P(m,n)在该函数的图象上,
    ∴n=﹣2m+2,
    ∵m﹣n=4,
    ∴m﹣(﹣2m+2)=4,
    解得m=2,n=﹣2,
    ∴点P的坐标为(2,﹣2).
    【点评】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征以及一次函数的性质,求得解析式上解题的关键.
     
    19.(8分)(2017•杭州)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.
    (1)求证:△ADE∽△ABC;
    (2)若AD=3,AB=5,求的值.

    【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;
    (2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,从而可知.
    【解答】解:(1)∵AG⊥BC,AF⊥DE,
    ∴∠AFE=∠AGC=90°,
    ∵∠EAF=∠GAC,
    ∴∠AED=∠ACB,
    ∵∠EAD=∠BAC,
    ∴△ADE∽△ABC,

    (2)由(1)可知:△ADE∽△ABC,
    ∴=
    由(1)可知:∠AFE=∠AGC=90°,
    ∴∠EAF=∠GAC,
    ∴△EAF∽△CAG,
    ∴,
    ∴=
    【点评】本题考查相似三角形的判定,解题的关键是熟练运用相似三角形的判定,本题属于中等题型.
     
    20.(10分)(2017•杭州)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.
    (1)设矩形的相邻两边长分别为x,y.
    ①求y关于x的函数表达式;
    ②当y≥3时,求x的取值范围;
    (2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?
    【分析】(1)①直接利用矩形面积求法进而得出y与x之间的关系;②直接利用y≥3得出x的取值范围;
    (2)直接利用x+y的值结合根的判别式得出答案.
    【解答】解:(1)①由题意可得:xy=3,
    则y=;

    ②当y≥3时,≥3
    解得:x≤1;

    (2)∵一个矩形的周长为6,
    ∴x+y=3,
    ∴x+=3,
    整理得:x2﹣3x+3=0,
    ∵b2﹣4ac=9﹣12=﹣3<0,
    ∴矩形的周长不可能是6;
    ∵一个矩形的周长为10,
    ∴x+y=5,
    ∴x+=5,
    整理得:x2﹣5x+3=0,
    ∵b2﹣4ac=25﹣12=13>0,
    ∴矩形的周长可能是10.
    【点评】此题主要考查了反比例函数的应用以及一元二次方程的解法,正确得出y与x之间的关系是解题关键.
     
    21.(10分)(2017•杭州)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.
    (1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;
    (2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.

    【分析】(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可证明;
    (2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,MN=x,在Rt△ABN中,根据AB2=AN2+BN2,可得1=x2+(2x+x)2,
    解得x=,推出BN=,再根据BG=BN÷cos30°即可解决问题;
    【解答】解:(1)结论:AG2=GE2+GF2.
    理由:连接CG.
    ∵四边形ABCD是正方形,
    ∴A、C关于对角线BD对称,
    ∵点G在BD上,
    ∴GA=GC,
    ∵GE⊥DC于点E,GF⊥BC于点F,
    ∴∠GEC=∠ECF=∠CFG=90°,
    ∴四边形EGFC是矩形,
    ∴CF=GE,
    在Rt△GFC中,∵CG2=GF2+CF2,
    ∴AG2=GF2+GE2.

    (2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.
    ∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,
    ∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,
    ∴∠AMN=30°,
    ∴AM=BM=2x,MN=x,
    在Rt△ABN中,∵AB2=AN2+BN2,
    ∴1=x2+(2x+x)2,
    解得x=,
    ∴BN=,
    ∴BG=BN÷cos30°=.

    【点评】本题考查正方形的性质、矩形的判定和性质、勾股定理直角三角形30度的性质等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考常考题型.
     
    22.(12分)(2017•杭州)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.
    (1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;
    (2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;
    (3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.
    【分析】(1)根据待定系数法,可得函数解析式;
    (2)根据函数图象上的点满足函数解析式,可得答案
    (3)根据二次函数的性质,可得答案.
    【解答】解:(1)函数y1的图象经过点(1,﹣2),得
    (a+1)(﹣a)=﹣2,
    解得a=﹣2,a=1,
    函数y1的表达式y=(x﹣2)(x+2﹣1),化简,得y=x2﹣x﹣2;
    函数y1的表达式y=(x+1)(x﹣2)化简,得y=x2﹣x﹣2,
    综上所述:函数y1的表达式y=x2﹣x﹣2;

    (2)当y=0时x2﹣x﹣2=0,解得x1=﹣1,x2=2,
    y1的图象与x轴的交点是(﹣1,0)(2,0),
    当y2=ax+b经过(﹣1,0)时,﹣a+b=0,即a=b;
    当y2=ax+b经过(2,0)时,2a+b=0,即b=﹣2a;

    (3)当P在对称轴的左侧时,y随x的增大而增大,
    (1,n)与(0,n)关于对称轴对称,
    由m<n,得x0<0;
    当时P在对称轴的右侧时,y随x的增大而减小,
    由m<n,得x0>1,
    综上所述:m<n,求x0的取值范围x0<0或x0>1.
    【点评】本题考查了二次函数图象上点的坐标特征,解(1)的关键是利用待定系数法;解(2)的关键是把点的坐标代入函数解析式;解(3)的关键是利用二次函数的性质,要分类讨论,以防遗漏.
     
    23.(12分)(2017•杭州)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,
    (1)点点同学通过画图和测量得到以下近似数据:
    ɑ
    30°
    40°
    50°
    60°
    β
    120°
    130°
    140°
    150°
    γ
    150°
    140°
    130°
    120°
    猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:
    (2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.

    【分析】(1)由圆周角定理即可得出β=α+90°,然后根据D是BC的中点,DE⊥BC,可知∠EDC=90°,由三角形外角的性质即可得出∠CED=α,从而可知O、A、E、B四点共圆,由圆内接四边形的性质可知:∠EBO+∠EAG=180°,即γ=﹣α+180°;
    (2)由(1)及γ=135°可知∠BOA=90°,∠BCE=45°,∠BEC=90°,由于△ABE的面积为△ABC的面积的4倍,所以,根据勾股定理即可求出AE、AC的长度,从而可求出AB的长度,再由勾股定理即可求出⊙O的半径r;
    【解答】解:(1)猜想:β=α+90°,γ=﹣α+180°
    连接OB,
    ∴由圆周角定理可知:2∠BCA=360°﹣∠BOA,
    ∵OB=OA,
    ∴∠OBA=∠OAB=α,
    ∴∠BOA=180°﹣2α,
    ∴2β=360°﹣(180°﹣2α),
    ∴β=α+90°,
    ∵D是BC的中点,DE⊥BC,
    ∴OE是线段BC的垂直平分线,
    ∴BE=CE,∠BED=∠CED,∠EDC=90°
    ∵∠BCA=∠EDC+∠CED,
    ∴β=90°+∠CED,
    ∴∠CED=α,
    ∴∠CED=∠OBA=α,
    ∴O、A、E、B四点共圆,
    ∴∠EBO+∠EAG=180°,
    ∴∠EBA+∠OBA+∠EAG=180°,
    ∴γ+α=180°;

    (2)当γ=135°时,此时图形如图所示,
    ∴α=45°,β=135°,
    ∴∠BOA=90°,∠BCE=45°,
    由(1)可知:O、A、E、B四点共圆,
    ∴∠BEC=90°,
    ∵△ABE的面积为△ABC的面积的4倍,
    ∴,
    ∴,
    设CE=3x,AC=x,
    由(1)可知:BC=2CD=6,
    ∵∠BCE=45°,
    ∴CE=BE=3x,
    ∴由勾股定理可知:(3x)2+(3x)2=62,
    x=,
    ∴BE=CE=3,AC=,
    ∴AE=AC+CE=4,
    在Rt△ABE中,
    由勾股定理可知:AB2=(3)2+(4)2,
    ∴AB=5,
    ∵∠BAO=45°,
    ∴∠AOB=90°,
    在Rt△AOB中,设半径为r,
    由勾股定理可知:AB2=2r2,
    ∴r=5,
    ∴⊙O半径的长为5.


    【点评】本题考查圆的综合问题,涉及圆周角定理,勾股定理,解方程,垂直平分线的性质等知识,综合程度较高,需要学生灵活运用所学知识.
     

    相关试卷

    2023年杭州市中考数学试卷及答案(word版): 这是一份2023年杭州市中考数学试卷及答案(word版),共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2020年杭州市中考数学试卷及答案(word版): 这是一份2020年杭州市中考数学试卷及答案(word版),共9页。试卷主要包含了×=,已知某快递公司的收费标准为,若a>b,则,设函数y=a等内容,欢迎下载使用。

    2016年杭州市中考数学试卷及答案(word版): 这是一份2016年杭州市中考数学试卷及答案(word版),共20页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2017年杭州市中考数学试卷及答案(word版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map