2017年杭州市中考数学试卷与答案
展开这是一份2017年杭州市中考数学试卷与答案,共5页。试卷主要包含了设x,y,c是实数,,若x+5>0,则 A等内容,欢迎下载使用。
2017年浙江省杭州市中考数学试卷
一.选择题:本大题有10个小题,每小题3分,共30分。
1.﹣22=( ) A.﹣2 B.﹣4 C.2 D.4
2.太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为( )
A.1.5×108 B.1.5×109 C.0.15×109 D.15×107
3.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则( )
A. B. C. D.
4.|1+|+|1﹣|=( ) A.1 B. C.2 D.2
5.设x,y,c是实数,( )
A.若x=y,则x+c=y﹣c B.若x=y,则xc=yc C.若x=y,则 D.若,则2x=3y
6.若x+5>0,则( ) A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<12
7.某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则( )
A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8 C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.8
8.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的底面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则( )
A.l1:l2=1:2,S1:S2=1:2 B.l1:l2=1:4,S1:S2=1:2
C.l1:l2=1:2,S1:S2=1:4 D.l1:l2=1:4,S1:S2=1:4
9.设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,( )
A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0
C.若m<1,则(m+1)a+b>0 D.若m<1,则(m+1)a+b<0
10.如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则( ) A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21
二.填空题:本大题有6个小题,每小题4分,共24分。
11.数据2,2,3,4,5的中位数是 .
12.如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB= .
13.一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是 .
14.若•|m|=,则m= .
15.如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于 .
16.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉 千克.(用含t的代数式表示.)
三.解答题:本大题有7个小题,共66分。
17.(6分)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).
(1)求a的值,并把频数直方图补充完整;
组别(m) | 频数 |
1.09~1.19 | 8 |
1.19~1.29 | 12 |
1.29~1.39 | a |
1.39~1.49 | 10 |
(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.
18.(8分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.
19.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.
20.(10分)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.
(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?
21.(10分)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;
(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.
22.(12分)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.
23.(12分)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:
ɑ | 30° | 40° | 50° | 60° |
β | 120° | 130° | 140° | 150° |
γ | 150° | 140° | 130° | 120° |
猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:
(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.
2017年浙江省杭州市中考数学试卷答案
1. B.2. A.3. B.4.D.5. B.6. D.7. C.8. A.9. C.10. B.
11. 3.12. 50°13. .14. 3或﹣1.15. 78.16. 30﹣.
三. 17.解:(1)a=50﹣8﹣12﹣10=20,
;
(2)该年级学生跳高成绩在1.29m(含1.29m)以上的人数是:500×=300(人).
18.解:设解析式为:y=kx+b,
将(1,0),(0,2)代入得:,
解得:,
∴这个函数的解析式为:y=﹣2x+2;
(1)把x=﹣2代入y=﹣2x+2得,y=6,
把x=3代入y=﹣2x+2得,y=﹣4,
∴y的取值范围是﹣4≤y<6.
(2)∵点P(m,n)在该函数的图象上,
∴n=﹣2m+2,
∵m﹣n=4,
∴m﹣(﹣2m+2)=4,
解得m=2,n=﹣2,
∴点P的坐标为(2,﹣2).
19.解:(1)∵AG⊥BC,AF⊥DE,
∴∠AFE=∠AGC=90°,
∵∠EAF=∠GAC,
∴∠AED=∠ACB,
∵∠EAD=∠BAC,
∴△ADE∽△ABC,
(2)由(1)可知:△ADE∽△ABC,
∴=
由(1)可知:∠AFE=∠AGC=90°,
∴∠EAF=∠GAC,
∴△EAF∽△CAG,
∴,
∴=
20.解:(1)①由题意可得:xy=3,
则y=;
②当y≥3时,≥3
解得:x≤1,
故x的取值范围是:0<x≤1;
(2)∵一个矩形的周长为6,
∴x+y=3,
∴x+=3,
整理得:x2﹣3x+3=0,
∵b2﹣4ac=9﹣12=﹣3<0,
∴矩形的周长不可能是6;
所以圆圆的说法不对.
∵一个矩形的周长为10,
∴x+y=5,
∴x+=5,
整理得:x2﹣5x+3=0,
∵b2﹣4ac=25﹣12=13>0,
∴矩形的周长可能是10,
所以方方的说法对.
21.解:(1)结论:AG2=GE2+GF2.
理由:连接CG.
∵四边形ABCD是正方形,
∴A、C关于对角线BD对称,
∵点G在BD上,
∴GA=GC,
∵GE⊥DC于点E,GF⊥BC于点F,
∴∠GEC=∠ECF=∠CFG=90°,
∴四边形EGFC是矩形,
∴CF=GE,
在Rt△GFC中,∵CG2=GF2+CF2,
∴AG2=GF2+GE2.
(2)过点A作AH⊥BG,
∵四边形ABCD是正方形,
∴∠ABD=∠GBF=45°,
∵GF⊥BC,
∴∠BGF=45°,
∵∠AGF=105°,
∴∠AGB=∠AGF﹣∠BGF=105°﹣45°=60°,
在Rt△ABH中,∵AB=1,
∴AH=BH=,
在Rt△AGH中,∵AH=,∠GAH=30°,
∴HG=AH•tan30°=,
∴BG=BH+HG=+.
22.解:(1)函数y1的图象经过点(1,﹣2),得
(a+1)(﹣a)=﹣2,
解得a1=﹣2,a2=1,
函数y1的表达式y=(x﹣2)(x+2﹣1),化简,得y=x2﹣x﹣2;
函数y1的表达式y=(x+1)(x﹣2)化简,得y=x2﹣x﹣2,
综上所述:函数y1的表达式y=x2﹣x﹣2;
(2)当y=0时(x+a)(x﹣a﹣1)=0,解得x1=﹣a,x2=a+1,
y1的图象与x轴的交点是(﹣a,0),(a+1,0),
当y2=ax+b经过(﹣a,0)时,﹣a2+b=0,即b=a2;
当y2=ax+b经过(a+1,0)时,a2+a+b=0,即b=﹣a2﹣a;
(3)当P在对称轴的左侧(含顶点)时,y随x的增大而减小,
(1,n)与(0,n)关于对称轴对称,
由m<n,得0<x0≤;
当时P在对称轴的右侧时,y随x的增大而增大,
由m<n,得<x0<1,
综上所述:m<n,求x0的取值范围0<x0<1.
23.解:(1)猜想:β=α+90°,γ=﹣α+180°
连接OB,
∴由圆周角定理可知:2∠BCA=360°﹣∠BOA,
∵OB=OA,
∴∠OBA=∠OAB=α,
∴∠BOA=180°﹣2α,
∴2β=360°﹣(180°﹣2α),
∴β=α+90°,
∵D是BC的中点,DE⊥BC,
∴OE是线段BC的垂直平分线,
∴BE=CE,∠BED=∠CED,∠EDC=90°
∵∠BCA=∠EDC+∠CED,
∴β=90°+∠CED,
∴∠CED=α,
∴∠CED=∠OBA=α,
∴O、A、E、B四点共圆,
∴∠EBO+∠EAG=180°,
∴∠EBA+∠OBA+∠EAG=180°,
∴γ+α=180°;
(2)当γ=135°时,此时图形如图所示,
∴α=45°,β=135°,
∴∠BOA=90°,∠BCE=45°,
由(1)可知:O、A、E、B四点共圆,
∴∠BEC=90°,
∵△ABE的面积为△ABC的面积的4倍,
∴,
∴,
设CE=3x,AC=x,
由(1)可知:BC=2CD=6,
∵∠BCE=45°,
∴CE=BE=3x,
∴由勾股定理可知:(3x)2+(3x)2=62,
x=,
∴BE=CE=3,AC=,
∴AE=AC+CE=4,
在Rt△ABE中,
由勾股定理可知:AB2=(3)2+(4)2,
∴AB=5,
∵∠BAO=45°,
∴∠AOB=90°,
在Rt△AOB中,设半径为r,
由勾股定理可知:AB2=2r2,
∴r=5,
∴⊙O半径的长为5.
相关试卷
这是一份2018年杭州市中考数学试卷与答案,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2016年杭州市中考数学试卷与答案,共5页。试卷主要包含了填空题等内容,欢迎下载使用。
这是一份2015年杭州市中考数学试卷与答案,共6页。试卷主要包含了仔细选一选,认真填一填,全面答一答等内容,欢迎下载使用。