考点02 等腰三角形与直角三角形-2021年中考数学一轮复习基础夯实(安徽专用)
展开考点二 等腰三角形与直角三角形
知识点整合
一、等腰三角形
1.等腰三角形的性质
定理:等腰三角形的两个底角相等(简称:等边对等角).
推论1:等腰三角形顶角平分线平分底边并且垂直于底边,即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.
推论2:等边三角形的各个角都相等,并且每个角都等于60°.
2.等腰三角形的判定
定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.
推论1:三个角都相等的三角形是等边三角形.
推论2:有一个角是60°的等腰三角形是等边三角形.
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
二、等边三角形
1.定义:三条边都相等的三角形是等边三角形.
2.性质:等边三角形的各角都相等,并且每一个角都等于60°.
3.判定:三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.
三、直角三角形与勾股定理
1.直角三角形
定义:有一个角是直角的三角形叫做直角三角形.
性质:(1)直角三角形两锐角互余;
(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;
(3)在直角三角形中,斜边上的中线等于斜边的一半.
判定:(1)两个内角互余的三角形是直角三角形;
(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.
2.勾股定理及逆定理
(1)勾股定理:直角三角形的两条直角边a、b的平方和等于斜边c的平方,即:a2+b2=c2.
(2)勾股定理的逆定理:如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形.
考向一 等腰三角形的性质判定
1.等腰三角形是轴对称图形,它有1条或3条对称轴.
2.等腰直角三角形的两个底角相等且等于45°.学-科网
3.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).
4.等腰三角形的三边关系:设腰长为a,底边长为b,则<a.
5.等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°-2∠B,∠B=∠C=.
6.等腰三角形的判定定理是证明两条线段相等的重要依据,是把三角形中的角的相等关系转化为边的相等关系的重要依据.
7.底角为顶角的2倍的等腰三角形非常特殊,其底角平分线将原等腰三角形分成两个等腰三角形.
典例引领
1.(2020·全国八年级课时练习)如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒
A.2.5 B.3 C.3.5 D.4
【答案】D
【详解】
解:设运动的时间为x,
在△ABC中,AB=20cm,AC=12cm,
点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,
当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x,即20﹣3x=2x,
解得x=4.
故选D.
【点睛】
此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,此题涉及到动点,有一定的拔高难度,属于中档题.
2.(2019·山西九年级专题练习)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是( )
A.20° B.35° C.40° D.70°
【答案】B
【分析】
先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.
【详解】
∵AD是△ABC的中线,AB=AC,∠CAD=20°,
∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.
∵CE是△ABC的角平分线,
∴∠ACE=∠ACB=35°.
故选B.
【点睛】
本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.
3.(2017·山西九年级专题练习)如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是( )
A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE
4.(2016·陕西九年级专题练习)如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=( )
A.80° B.60° C.50° D.40°
变式拓展
1.(2019·甘肃永登县·八年级期中)如图,将绕直角顶点C顺时针旋转,得到,连接AD,若,则______.
2.(2018·河南平舆县·八年级期中)如图,在△ABC中,AC=BC=2,∠C=900,AD是△ABC的角平分线,DE⊥AB,垂足为E,AD的垂直平分线交AB于点F,则DF的长为 __________________.
4.(2017·山西九年级专题练习)如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.
求证:△BDE是等腰三角形.
5.(2020·天津和平区·九年级二模)如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.
(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);
(2)在(1)的条件下,①证明:AE⊥DE;
②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.
考向二 等边三角形的性质与判定
1.等边三角形具有等腰三角形的一切性质.
2.等边三角形是轴对称图形,它有三条对称轴.
3.等边三角形的内心、外心、重心和垂心重合.
4 . 在等腰三角形中,只要有一个角是60°,无论这个角是顶角还是底角,这个三角形就是等边三角形.
典例引领
1.(2020·渑池县教育体育局教研室八年级期中)如图,等边△ABC的边长为4,AD是边BC上的中线,F是边AD上的动点,E是边AC上一点,若AE=2,则EF+CF取得最小值时,∠ECF的度数为( )
A.15° B.22.5° C.30° D.45°
【答案】C
【解析】
试题解析:过E作EM∥BC,交AD于N,
∵AC=4,AE=2,
∴EC=2=AE,
∴AM=BM=2,
∴AM=AE,
∵AD是BC边上的中线,△ABC是等边三角形,
∴AD⊥BC,
∵EM∥BC,
∴AD⊥EM,
∵AM=AE,
∴E和M关于AD对称,
连接CM交AD于F,连接EF,
则此时EF+CF的值最小,
∵△ABC是等边三角形,
∴∠ACB=60°,AC=BC,
∵AM=BM,
∴∠ECF=∠ACB=30°,
故选C.
2.(2020·全国八年级期中)如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为( )
A.15° B.30° C.45° D.60°
【答案】D
【解析】
因为△ABC是等边三角形,所以∠ABD=∠BCE=60°,AB=BC.
因为BD=CE,所以△ABD≌△BCE,所以∠1=∠CBE.
因为∠CBE+∠ABE=60°,所以∠1+∠ABE=60°.
因为∠2=∠1+∠ABE,所以∠2=60°.
故选D.
变式拓展
1.(2019·湖南长沙市·长郡中学八年级开学考试)如图,为线段上一动点(不与点、重合),在同侧分别作等边和等边,与交于点,与交于点,与交于点,连接、,以下五个结论:①;②;③;④;⑤平分.一定成立的结论有______________;
2.(2018·山西九年级专题练习)如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE=1,∠E=30°,则BC=____.
3.(2020·河南九年级专题练习)已知:在中, ,为的中点, , ,垂足分别为点,且.求证:是等边三角形.
4.(2018·陕西九年级专题练习)如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF
(1)求证:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面积.
考向三 直角三角形与勾股定理
1 . 在直角三角形中,30°的角所对的直角边等于斜边的一半,这个性质常常用于计算三角形的边长,也是证明一边(30°角所对的直角边)等于另一边(斜边)的一半的重要依据.当题目中已知的条件或结论倾向于该性质时,我们可运用转化思想,将线段或角转化,构造直角三角形,从而将陌生的问题转化为熟悉的问题.
2.应用勾股定理时,要分清直角边和斜边,尤其在记忆a2+b2=c2时,斜边只能是c.若b为斜边,则关系式是a2+c2=b2;若a为斜边,则关系式是b2+c2=a2.
3.如果已知的两边没有明确边的类型,那么它们可能都是直角边,也可能是一条直角边、一条斜边,求解时必须进行分类讨论,以免漏解.
典例引领
1.(2020·河南平顶山市·平顶山四十三中八年级月考)已知直角三角形两边的长为3和4,则此三角形的周长为( )
A.12 B.7+ C.12或7+ D.以上都不对
【答案】C
【详解】
设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,x==5,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,x=,此时这个三角形的周长=3+4+=7+.故选C
2.(2020·无锡市第一女子中学八年级期中)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为
A. B.3 C.1 D.
【答案】A
【分析】
首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可
【详解】
∵AB=3,AD=4,∴DC=3
∴根据勾股定理得AC=5
根据折叠可得:△DEC≌△D′EC,
∴D′C=DC=3,DE=D′E
设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,
在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,
解得:x=
故选A.
3.(2019·山西九年级专题练习)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=_____.
变式拓展
1.(2020·山东博山区·九年级二模)如图所示的网格是正方形网格,则=_____°(点A,B,P是网格线交点).
2.(2019·山西九年级专题练习)如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.
3.(2020·芜湖市南瑞实验学校九年级月考)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.
(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;
(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;
(3)如果△ABC是等边三角形,试求这个一元二次方程的根.
4.(2020·全国八年级单元测试)阅读下列题目的解题过程:
已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.
解:∵a2c2﹣b2c2=a4﹣b4 (A)
∴c2(a2﹣b2)=(a2+b2)(a2﹣b2) (B)
∴c2=a2+b2 (C)
∴△ABC是直角三角形
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ;
(2)错误的原因为: ;
(3)本题正确的结论为: .
5.(2020·浙江杭州市·八年级期中)如图,△AOB,△COD是等腰直角三角形,点D在AB上,
(1)求证:△AOC≌△BOD;
(2)若AD=3,BD=1,求CD.
6.(2019·河南郑州市·郑州外国语中学八年级期中)如图,△ABC中,∠BAC=900,AB=AC,点D是BC上一动点,连接AD,过点A作AE⊥AD,并且始终保持AE=AD,连接CE.
(1)求证:△ABD≌△ACE;
(2)若AF平分∠DAE交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;
(3)在(2)的条件下,若BD=6,CF=8,求AD的长.
考点02 矩形、菱形、正方形-2022年中考数学一轮复习基础夯实(安徽专用): 这是一份考点02 矩形、菱形、正方形-2022年中考数学一轮复习基础夯实(安徽专用),文件包含考点02矩形菱形正方形解析版docx、考点02矩形菱形正方形原卷版docx等2份试卷配套教学资源,其中试卷共84页, 欢迎下载使用。
考点02 二次根式-2022年中考数学一轮复习基础夯实(安徽专用): 这是一份考点02 二次根式-2022年中考数学一轮复习基础夯实(安徽专用),文件包含考点02二次根式解析版docx、考点02二次根式原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
考点02 与圆有关的位置关系-2021年中考数学一轮复习基础夯实(安徽专用): 这是一份考点02 与圆有关的位置关系-2021年中考数学一轮复习基础夯实(安徽专用),文件包含考点02与圆有关的位置关系原卷版docx、考点02与圆有关的位置关系解析版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。