2021年中考数学二轮专题复习《压轴题》培优练习十三(含答案)
展开中考数学二轮专题复习《压轴题》培优练习十三
1.如图,二次函数y=-0.25x2+bx+c的图像经过点A(4,0),B(-4,-4),且与y轴交于点C.
(1)试求此二次函数的解析式;
(2)试证明:∠BAO=∠CAO(其中O是原点);
(3)若P是线段AB上的一个动点(不与A,B重合),过P作y轴的平行线,分别交此二次函数图像及x轴于Q、H两点.试问:是否存在这样的点P,使PH=2QH?若存在,请求出点P的坐标;若不存在,请说明理由。
2.如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).
(1)求点B,C的坐标;
(2)判断△CDB的形状并说明理由;
(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.
3.如图,抛物线y=0.5x2+bx-2与x轴交于A(x1,0),B(x2,0)两点,与y轴交于点C.
(1)则点C坐标为 ;x1∙x2= ;
(2)己知A(-1,0),连接AC并延长到点D,使得BD=AB,求点D的坐标;
(3)在(2)的条件下,抛物线的对称轴上是否存在点P,使得∠BPC=∠BAC?若存在,求出点P的坐标,若不存在,请说明理由.
4.如图,抛物线y=ax2+bx(a≠0)经过经过点A(2,0),点B(3,3),BC⊥x轴于点C,连接OB,等腰直角三角形DEF的斜边EF在x轴上,点E的坐标为(﹣4,0),点F与原点重合.
(1)求抛物线的解析式;
(2)△DEF以每秒1个单位长度的速度沿x轴正方向移动,运动时间为t秒,当点D落在BC边上时停止运动,
①求点D落在抛物线上时点D的坐标;
②设△DEF与△OBC的重叠部分的面积为S,求出S关于t的函数关系式.
5.如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒k厘米,行完AC全程用时8秒;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为x秒(0<x<8),△DCQ的面积为y1平方厘米,△PCQ的面积为y2平方厘米.
(1)求y1与x的函数关系,并在图2中画出y1的图象;
(2)如图2,y2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P的速度及AC的长;
(3)在图2中,点G是x轴正半轴上一点(0<OG<6)过G作EF垂直于x轴,分别交y1、y2于点E、F.
①说出线段EF的长在图1中所表示的实际意义;
②当0<x<6时,求线段EF长的最大值.
6.如图1,已知抛物线y=﹣x2﹣x+c与x轴相交于A、B两点(B点在A点的左侧),与y轴相交于C点,且AB=10.
(1)求这条抛物线的解析式;
(2)如图2,D点在x轴上,且在A点的右侧,E点为抛物线上第二象限内的点,连接ED交抛物线于第二象限内的另外一点F,点E到y轴的距离与点F到y轴的距离之比为3:1,已知tan∠BDE=,求点E的坐标;
(3)如图3,在(2)的条件下,点G由B出发,沿x轴负方向运动,连接EG,点H在线段EG上,连接DH,∠EDH=∠EGB,过点E作EK⊥DH,与抛物线相应点E,若EK=EG,求点K的坐标.
7.如图,在平面直角坐标系中,四边形OABC是平行四边形.直线L经过O、C两点.点A的坐标为(8,0),点B的坐标为(11,4),动点P在线段OA上从点O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O一C﹣B相交于点M.当Q、M两点相遇时,P、Q两点停止运动,设点P、Q运动的时间为t秒(t>0).△MPQ的面积为S.
(1)点C的坐标为 ,直线L的解析式为 .
(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围.
(3)试求题(2)中当t为何值时,S的值最大,并求出S的最大值.
(4)随着P、Q两点的运动,当点M在线段CB上运动时,设PM的延长线与直线L相交于点N.试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.
8.如图,在平面直角坐标系xoy中,O为坐标原点,点A(4,0),点B(0,4),△ABO的中线AC与y轴交于点C,且⊙M经过O,A,C三点.
(1)求圆心M的坐标;
(2)若直线AD与⊙M相切于点A,交y轴于点D,求直线AD的函数表达式;
(3)在过点B且以圆心M为顶点的抛物线上有一动点P,过点P作PE∥y轴,交直线AD于点E.若以PE为半径的⊙P与直线AD相交于另一点F.当EF=4时,求点P的坐标.
0.答案解析
1.解:
(1)∵点与在二次函数图像上,
∴,解得,
∴二次函数解析式为.
(2)过作轴于点,由(1)得,则在中,
,又在中,,
∵,∴.
(3)由与,可得直线AB的解析式为,
设,则,
∴.∴.
当,解得 (舍去),∴.
当,解得 (舍去),∴.
综上所述,存在满足条件的点,它们是与.
2.解:
(1)∵点A(﹣1,0)在抛物线y=﹣(x﹣1)2+c上,∴0=﹣(﹣1﹣1)2+c,得c=4,
∴抛物线解析式为:y=﹣(x﹣1)2+4,令x=0,得y=3,∴C(0,3);
令y=0,得x=﹣1或x=3,∴B(3,0).
(2)△CDB为直角三角形.理由如下:由抛物线解析式,得顶点D的坐标为(1,4).
如答图1所示,过点D作DM⊥x轴于点M,则OM=1,DM=4,BM=OB﹣OM=2.
过点C作CN⊥DM于点N,则CN=1,DN=DM﹣MN=DM﹣OC=1.
在Rt△OBC中,由勾股定理得:BC===;
在Rt△CND中,由勾股定理得:CD===;
在Rt△BMD中,由勾股定理得:BD===.
∵BC2+CD2=BD2,∴△CDB为直角三角形(勾股定理的逆定理).
(3)设直线BC的解析式为y=kx+b,∵B(3,0),C(0,3),
∴,解得k=﹣1,b=3,∴y=﹣x+3,直线QE是直线BC向右平移t个单位得到,
∴直线QE的解析式为:y=﹣(x﹣t)+3=﹣x+3+t;
设直线BD的解析式为y=mx+m,∵B(3,0),D(1,4),∴,解得:m=﹣2,n=6,
∴y=﹣2x+6.连接CQ并延长,射线CQ交BD于点G,则G(1.5,3).在△COB向右平移的过程中:
(I)当0<t≤1.5时,如答图2所示:设PQ与BC交于点K,可得QK=CQ=t,PB=PK=3﹣t.
设QE与BD的交点为F,则:,解得,∴F(3﹣t,2t).
S=S△QPE﹣S△PBK﹣S△FBE=0.5PE•PQ=0.5PB•PK=0.5BE•yF==0.5×3×3=0.5(3﹣t)2=0.5t•2t=-1.5t2+3t;
(II)当1.5<t<3时,如答图3所示:设PQ分别与BC、BD交于点K、点J.
∵CQ=t,∴KQ=t,PK=PB=3﹣t.直线BD解析式为y=﹣2x+6,令x=t,得y=6﹣2t,∴J(t,6﹣2t).
S=S△PBJ﹣S△PBK=0.5PB•PJ﹣0.5PB•PK=0.5(3﹣t)(6﹣2t)﹣0.5(3﹣t)2=0.5t2﹣3t+4.5.
综上所述,S与t的函数关系式为:S=.
3.解:
(1) C(0,-2),-4,;
(2) D(1,-4);
(3) P(1.5,2.5),(1.5,)
4.解:
(1)根据题意得:,解得a=1,b=﹣2,
故抛物线解析式是y=x2﹣2x;
(2)①∵点E的坐标为(﹣4,0),∴EF=4,
∵△DEF是等腰直角三角形,∴点D的纵坐标为2,
当点D在抛物线上时:x2﹣2x=2,解得:x1=1+,x2=1﹣,
∴点D落在抛物线上时点D的坐标为:(1+,2)或(1﹣,2);
②有3种情况:
(Ⅰ)当0≤t≤3时,△DEF与△OBC重叠部分为等腰直角三角形,如图1:S=t2;
(Ⅱ)当3<t≤4时,△DEF与△OBC重叠部分是四边形,如图2:S=﹣t2+3t﹣;
(Ⅲ)当4<t≤5时,△DEF与△OBC重叠部分是四边形,如图3:S=﹣t2+3t﹣.
5.解:
(1)∵,CD=3,CQ=x,∴.图象如图所示.
(2)方法一:,CP=8k-xk,CQ=x,
∴.∵抛物线顶点坐标是(4,12),
∴.解得.则点P的速度每秒厘米,AC=12厘米.
方法二:观察图象知,当x=4时,△PCQ面积为12.
此时PC=AC-AP=8k-4k=4k,CQ=4.∴由,得 .
解得.则点P的速度每秒厘米,AC=12厘米.
方法三:设y2的图象所在抛物线的解析式是.
∵图象过(0,0),(4,12),(8,0),
∴ 解得 ∴. ①
∵,CP=8k-xk,CQ=x,∴.②
比较①②得.则点P的速度每秒厘米,AC=12厘米.
(3)①观察图象,知线段的长EF=y2-y1,表示△PCQ与△DCQ的面积差(或△PDQ面积).
②由⑵得 .(方法二,)
∵EF=y2-y1,∴EF=,
∵二次项系数小于0,∴在范围,当时,最大.
6.解:
(1)由y=﹣x2﹣x+c,可得对称轴为x=﹣4
∵AB=10,∴点A的坐标为(1,0),∴,∴c=3
∴抛物线的解析式为y=﹣+3.
(2)如图2,作EM⊥x轴,垂足为点M,FN⊥x轴,垂足为点N,FT⊥EM,垂足为点T.
∴∠TMN=∠FNM=∠MTF=90°,∴四边形FTMN为矩形,
∴EM∥FN,FT∥BD.∴∠BDE=∠EFT,∵tan∠BDE=,∴tan∠EFT=,
设E(﹣3m,yE),F(﹣m,yF)∴
∵y=﹣+3过点E、F,
则yE﹣yF==(﹣3m2+8m+3)﹣(﹣+3),
解得m=0(舍去)或m=1,当m=1时,﹣3m=﹣3,
∴=8.∴E(﹣3,8).
(3)如图3,作EM⊥x轴,垂足为点M,过点K作KR⊥ED,与ED相交于点R,
与x轴相交于点Q.
∵∠KER+∠EDH=90°,∠EGM+∠GEM=90°,∠EDH=∠EGM,∴∠KER=∠GEM,
在△EGM和△EKR中,∴△EGM≌△EKR,∴EM=ER=8,
∵tan∠BDE=.∴ED=10,∴DR=2,∴DQ=∴Q(﹣,0),
可求R(,)∴直线RQ的解析式为:y=.
设点K的坐标为(x,)代入抛物线解析式可得x=﹣11
∴K(﹣11,﹣8).
7.解:
8.解:
(1)点B(0,4),则点C(0,2),
∵点A(4,0),则点M(2,1);
(2)∵⊙P与直线AD,则∠CAD=90°,
设:∠CAO=α,则∠CAO=∠ODA=∠PEH=α,
tan∠CAO===tanα,则sinα=,cosα=,
AC=,则CD==10,则点D(0,﹣8),
将点A、D的坐标代入一次函数表达式:y=mx+n并解得:
直线AD的表达式为:y=2x﹣8;
(3)抛物线的表达式为:y=a(x﹣2)2+1,
将点B坐标代入上式并解得:a=,
故抛物线的表达式为:y=x2﹣3x+4,
过点P作PH⊥EF,则EH=EF=2,
cos∠PEH=,解得:PE=5,
设点P(x,x2﹣3x+4),则点E(x,2x﹣8),则PE=x2﹣3x+4﹣2x+8=5,
解得x=或2(舍去2),则点P(,).
2021年中考数学二轮专题复习《压轴题》培优练习十一(含答案): 这是一份2021年中考数学二轮专题复习《压轴题》培优练习十一(含答案),共12页。试卷主要包含了5.,5,0等内容,欢迎下载使用。
2021年中考数学二轮专题复习《压轴题》培优练习十四(含答案): 这是一份2021年中考数学二轮专题复习《压轴题》培优练习十四(含答案),共11页。试卷主要包含了5时“美点”的个数.,5+1,2,0),CE=1等内容,欢迎下载使用。
2021年中考数学二轮专题复习《压轴题》培优练习十二(含答案): 这是一份2021年中考数学二轮专题复习《压轴题》培优练习十二(含答案),共10页。试卷主要包含了设点,则,等内容,欢迎下载使用。