|教案下载
搜索
    上传资料 赚现金
    .3.3.5有关直线系问题教案 新人教A版必修2
    立即下载
    加入资料篮
    .3.3.5有关直线系问题教案 新人教A版必修201
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    .3.3.5有关直线系问题教案 新人教A版必修2

    展开

    课题:2.3.3.5直线系问题

    [学习目标]

    1.直线系概念:一般地,具有某种共同属性的一类直线的集合,称为直线系。

    它的方程称直线系方程,直线系方程中除含变量x 、y以外,还有可以根据具体条件取不同值的变量,称为参变量,简称参数。

    2.几种常见的直线系方程: 

       (1)过已知点P(x0,y0)的直线系方程:y-y0=k(x-x0)(k为参数)或x=x0(k不存在时)  

    (2)斜率为k的直线系方程y=kx+b(b是参数)() 

    (3)与已知直线Ax+By+C=0平行的直线系方程Ax+By+λ=0(λ为参数)     

    (4)与已知直线Ax+By+C=0垂直的直线系方程Bx-Ay+λ=0(λ为参数) 

    (5)过直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0的交点的直线系方程:  A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ为参数)不含l2

    确定平面上一条直线,需要两个独立且相容的几何条件,如果只给定一个条件,直线的位置不能完全确定。另一方面,如果只给定一个几何条件时,二元一次方程的两个独立的系数中,只有一个被确定,那个未被确定的系数是参数。利用直线系方程求直线,可以简化计算过程,欲求适合某两个几何条件的直线的方程,可先用其中一个条件写出直线系方程,再用另一个条件来确定参数值。用直线系方程求适合某一条件的直线时,应注意不能被该方程表示的直线(例如,过定点(x1,y1)的直线系方程,不能表示直线x-x1=0),若它符合已知条件,应收入过两直线交点的直线系方程有两种形式。其中A1x+B1y+C1+λ(A2x+B2y+C2)=0  较简单些,但它不能包含直线l2:A2x+B2y+C2=0本身。而方程m(A1x+B1y+C1)+n(A2x+B2y+C2)=0,(m,n不同时为零的实数),可以避免这个缺陷。

     

     例1:求与直线3x+4y-7=0垂直,且在x轴上的截距为-2 的直线。

    解法一:利用“垂直”写出直线系方程,再用“在x轴上截距为-2”这个条件确定参数。  和直线3x+4y-7=0垂直的直线系方程是4x-3y+m=0(其中m是参数)。直线方程是4x-3y+8=0.  

    解法二:利用“在x轴上截距为-2”这个条件写出直线系,再用“垂直”这个条件确定参数。  ∵此直线过点(-2,0)用点斜式写出直线系y-0=k(x+2),即y=k(x+2),(斜率k是参数)。  k1k=-1 所以直线方程为

     

     例2:求和直线3x+4y+2=0平行,且与坐标轴构成的三角形面积是24的直线l的方程。  

    解法一:先用“平行”这个条件写出直线系方程,再用“面积”这个条件确定参数。与直线3x+4y+2=0平行的直线系方程是3x+4y+m=0,令x=0,得y轴的载距 , 令y=0,得x轴的载距,因为直线与坐标轴围面的面积为24,所以|,所以m=所求直线l的方程为3x+4y±24=0.  

    解法二:先用“面积”这个条件写出直线系方程,再用“平行”这个条件确定参数。  设所求直线在x轴上的截距为a,在y轴上的截距为b,则画草图可知a、b同号,因为S= 所以ab=48, 又因为直线=1与直线3x+4y+2=0平行,所以所求直线为3x+4y±24=0.  

     

    例3:已知两直线l1∶x+2=0, l2∶4x+3y+5=0.及定点A(-1,-2).求:直线l,它过l1、l2的交点且与点A的距离等于1。 

    解法一:先利用“过l1、l2的交点”写出直线系方程,再根据“l与A点距离等于1”来确定参数。

    过l1、l2交点的直线系方程是(x+2)+λ(4x+3y+5)=0,λ是参数。

    化为(1+4λ)x+3λy+(2+5λ)=0①.得λ=0。  

    代入方程①,得x+2=0。因为直线系方程①中不包含l2,所以应检查l2是否也符合所求l的条件。∴l2也符合要求。 答:所求直线l的方程是x+2=0和4x+3y+5=0.

      

    解法二:l1、l2的交点为(-2,1),过这点的直线系方程为y-1=k(x+2)②,斜率k是参数。  即kx-y+(2k+1)=0③,再根据方程③的直线与点A(-1,-2)的距离为1,来确定参数k。得所求直线l的方程为4x+3y+5=0。 因为直线系方程②不包括与y轴平行的直线,所以应检查过点(-2,1)且与y轴平行的直线  x=-2是否符合所求直线l的条件。∵点A(-1,-2)到直线x=-2的距离为1,所以直线x=-2即x+2=0也符合l的要求,应该补上,答:所求直线l的方程是 x+2=0和4x+3y+5=0. 

     

     例4:在△ABC中,AB边所在直线方程为4x+y-12=0高BH所在直线方程为5x-4y-15=0高AH所在直线方程为2x+2y-9=0。求:第三条高CH所在直线方程与AC边所在直线方程。

     

     解:(1)H为垂心,CH过BH与AH的交点,且与AB垂直过BH与AH交点的直线系方程为(5x-4y-15)+λ(2x+2y-9)=0①,即(5+2λ)x+(-4+2λ)y+(-15-9λ)=0 ②.∴②与AB垂直,(即CH⊥AB),代入①,得CH所在直线方程是3x-12y-1=0.  

    (2)直线AC是过AB与AH的交点且与BH垂直的直线,可设AC方程是过AB与AH交点的直线系方程(4x+y-12)+λ(2x+2y-9)=0③,即(4+2λ)x+(1+2λ)y+(-12-9λ)=0④,∵AC⊥BH,∴5(4+2λ)+(-4)(1+2λ)=0,得λ=-8。代入④得直线AC的方程是4x+5y-20=0。 

     

     例5:已知2a-3b=1(a,b∈R),求证:直线ax+by-5=0必过一个定点,并求出此定点。代入ax+by-5=0,得(x-10)+b(3x+2y)=0①∵b是实数,∴方程①可看作过两相交直线交点的直线系方程,这两条直线分别是l1∶x-10=0, l2∶3x+2y=0,这两条直线的交点坐标为P(10,-15)。∵P点坐标代入直线ax+by-5=0的左边得a×10+b(-15)-5=5(2a-3b)-5=5×1-5=0.(注意2a-3b=1是已知条件),∴直线ax+by-5=0过定点P(10-15)。 

     例6已知直线l1∶2x-3y-1=0,l2:3x-y-2=0,l3:7x-7y-2009=0;求过l1、l2交点且与l3垂直的直线方程。分析:过两直线l1,l2的交点的直线系方程为l1+λl2=0(λ∈R),根据已知条件,用待定系数法求出λ即可。

    解:设λ为待定系数,则所求直线系方程是(2x-3y-1)+λ(3x-y-2)=0,①

    整理为(2+3λ)x+(-3-λ)y+(-1-2λ)=0.②

    ∵方程②与直线l3垂直,其系数关系为7(2+3λ)-7(-3-λ)=0→λ=-5/4 ③ 

    ③式代入②,所求直线为7x+7y-6=0。 

     例7:长度为1的线段AB(B在A的右边)在x轴上移动,点P(0,1)与A点连成直线,点Q(1,2)与B点连成直线,求直线PA和直线QB交点的轨迹方程;并作出草图。

    解:设交点为M(x,y).A(a,0),则B(a+1,0),直线PA方程为即x+ay=a.直线BQ方程2x+ay-2-2a=0.

    ∴动点M的参数方程为=0(参数),消去参数a得轨迹方程为 

     

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map