





第60讲 独立事件及随机变量的概率分布-2021届新课改地区高三数学一轮专题复习
展开第60讲:独立事件及随机变量的概率分布
一、课程标准
1、 理解离散型随机变量及其概率分布的概念,掌握概率分布列的基本性质,会求一些简单的离散型随机变量的概率分布列.
2、理解超几何分布及其导出过程,并能进行简单的应用.
3、 理解随机变量的概率分布,掌握0-1分布,超几何分布的分布列,并能处理简单的实际问题
二、基础知识回顾
1. 事件的相互独立性
(1)定义:设A,B为两个事件,如果P(AB)=P(A)P(B),那么称事件A与事件B相互独立.
(2)性质:
①若事件A与B相互独立,则P(AB)=P(A)P(B).
②如果事件A与B相互独立,那么A与B-,A-与B,A-与B-也相互独立.
(3)独立重复试验:在相同条件下重复做的n次试验称为n次独立重复试验,在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=Cpkn-k(k=0,1,2,…,n).
2. 随机变量的有关概念
(1)随机变量:随着试验结果变化而变化的变量,常用字母X,Y,ξ,η,…表示.
(2)离散型随机变量:所有取值可以一一列出的随机变量.
3. 离散型随机变量的概率分布及其性质
(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,xi,…,xn,X取每一个值xi(i=1,2,…,n)的概率P(X=xi)=pi,则表
X | x1 | x2 | … | xi | … | xn |
P | p1 | p2 | … | pi | … | pn |
称为离散型随机变量X的概率分布列,简称为X的概率分布,有时为了表达简单,也用等式P(X=xi)=pi,i=1,2,…,n表示X的概率分布.
(2)离散型随机变量概率分布的性质
①pi≥0(i=1,2,…,n);②p1+p2+…+pn=1.
4. 常见离散型随机变量的概率分布
(1)两点分布:
若随机变量X服从两点分布,即其概率分布为
X | 0 | 1 |
P | 1-p | p |
其中p=P(X=1)称为成功概率.
(2)超几何分布:
在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件“X=r”发生的概率为P(X=r)=,r=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*,称分布列为超几何分布.
X | 0 | 1 | … | m |
P | … |
(3)二项分布X~B(n,p),记为Cpkqn-k=B(k;n,p).
X | 0 | 1 | … | k | … | n |
P | Cp0qn | Cp1qn-1 | … | Cpkqn-k | … | Cpnq0 |
5. 求概率分布的步骤
(1)明确随机变量X取哪些值;
(2)求X取每一个值的概率;
(3)列成表格.
三、自主热身、归纳总结
1、某同学通过英语听力测试的概率为,他连续测试n次,要保证他至少有一次通过的概率大于0.9,那么n的最小值是( )
- 3 B. 4 C. 5 D. 6
2、某电视台的夏日水上闯关节目中的前四关的过关率分别为,,,,只有通过前一关才能进入下一关,其中,第三关有两次闯关机会,且通过每关相互独立.一选手参加该节目,则该选手能进入第四关的概率为( )
A. B. C. D.
3、某区要从参加扶贫攻坚任务的5名干部A,B,C,D,E中随机选取2人,赴区属的某贫困村进行驻村扶贫工作,则A或B被选中的概率是( )
A. B.
C. D.
4、(2019·武汉市调研测试)已知某口袋中装有2个红球,3个白球和1个蓝球,从中任取3个球,则其中恰有两种颜色的概率是( )
A. B.
C. D.
5、如图所示的电路,有a,b,c三个开关,每个开关开或关的概率都是,且是相互独立的,则灯泡甲亮的概率是___.
第5题图
四、例题选讲
考点一 互斥事件、对立事件概率公式的应用
例1、某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000 张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:
(1)P(A),P(B),P(C);
(2)1张奖券的中奖概率;
(3)1张奖券不中特等奖且不中一等奖的概率.
变式1、某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次购物量 | 1至4件 | 5至8件 | 9至12件 | 13至16件 | 17件及以上 |
顾客数(人) | x | 30 | 25 | y | 10 |
结算时间(分钟/人) | 1 | 1.5 | 2 | 2.5 | 3 |
已知这100位顾客中一次购物量超过8件的顾客占55%.
(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;
(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)
变式2、A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):
A班 | 6 | 6.5 | 7 | 7.5 | 8 |
|
|
|
B班 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|
C班 | 3 | 4.5 | 6 | 7.5 | 9 | 10.5 | 12 | 13.5 |
(1)试估计C班的学生人数;
(2)从A班和C班抽出的学生中,各随机选取1人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率.
方法总结:
考点二 相互独立事件
例2 袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为.现有甲、乙两人从袋中轮流取球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有1人取到白球时终止.每个球在每一次被取出的机会是等可能的.
(1)求袋中原有白球的个数;
(2)求取球2次即终止的概率;
(3)求甲取到白球的概率.
变式1、一位网民在网上光顾某网店,经过一番浏览后,对该店铺中的A,B,C三种商品有购买意向.已知该网民购买A种商品的概率为,购买B种商品的概率为,购买C种商品的概率为.假设该网民是否购买这三种商品相互独立.
(1)求该网民至少购买2种商品的概率;
(2)用随机变量η表示该网民购买商品的种数,求η=1的概率.
变式2、甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为,各局比赛的结果相互独立,第1局甲当裁判.
(1)求第4局甲当裁判的概率;
(2)X表示前4局中乙当裁判的次数,求X的概率分布.
方法总结: (1)确定每个事件是相互独立的;(2)确定每个事件会同时发生;(3)先求出每个事件发生的概率,再求其积.
考点三 离散型随机变量的概率分布
例3 已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(不放回,且每个球取到的机会均等)3个球,记随机变量X为取出3个球所得分数之和,求X的概率分布.
变式、从0,1,2,3,4这五个数中任选三个不同的数组成一个三位数,记X为所组成的三位数各位数字之和.
(1)求X是奇数的概率;
(2)求X的概率分布及数学期望.
方法总结:离散型随机变量概率分布的求法:
(1)写出X的所有可能取值(注意准确理解X的含义,以免失误).
(2)利用概率知识求出X取各个值的概率.
(3)列表并检验,写出概率分布.
考点四 超几何分布与二项分布
例4 袋中有8个球,其中5个黑球,3个红球,从袋中任取3个球,求取出红球的个数X的概率分布,并求至少有一个红球的概率.
例5 从学校乘车到火车站的途中有三个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是,设ξ为途中遇到红灯的次数,求随机变量ξ的概率分布.
变式1、乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.
(1)求甲以4比1获胜的概率;
(2)求乙获胜且比赛局数多于5局的概率;
(3)求比赛局数的概率分布.
方法总结:求超几何分布的分布列,关键是明确随机变量是否服从超几何分布,分清M,N,n,k的值,然后求出相应的概率,最后列表即可.
利用二项分布解决实际问题的关键在于,在实际问题中建立二项分布的模型,也就是看它是否为n次独立重复试验,随机变量是否为在这n次独立重复试验中某事件发生的次数,满足这两点的随机变量才服从二项分布,否则就不服从二项分布.
五、优化提升与真题演练
1、(2020·合肥一六八中学测试题)如图,元件通过电流的概率均为0.9,且各元件是否通过电流相互独立,则电流能在M,N之间通过的概率是( )
A.0.729 B.0.8829 C.0.864 D.0.9891
2、(2020·山东青岛二中开学考试)掷一枚硬币两次,记事件“第一次出现正面”,“第二次出现反面”,则有( )
A.与相互独立 B.
C.与互斥 D.
3、(2020·江苏省南京外国语高三期末)如城镇小汽车的普及率为75%,即平均每100个家庭有75个家庭拥有小汽车,若从如城镇中任意选出5个家庭,则下列结论成立的是( )
A.这5个家庭均有小汽车的概率为
B.这5个家庭中,恰有三个家庭拥有小汽车的概率为
C.这5个家庭平均有3.75个家庭拥有小汽车
D.这5个家庭中,四个家庭以上(含四个家庭)拥有小汽车的概率为
4、(2020·河北易县中学高三月考)某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为,两次闭合后都出现红灯的概率为,则在第一次闭合后出现红灯的条件下,第二次闭合闭合后出现红灯的概率为________.
5、(2020届山东省潍坊市高三上学期统考)某市有,,,四个景点,一位游客来该市游览,已知该游客游览的概率为,游览,和的概率都是,且该游客是否游览这四个景点相互独立.用随机变量表示该游客游览的景点的个数,下列正确的( )
A.游客至多游览一个景点的概率 B.
C. D.
6、(2020届山东省烟台市高三上期末)某企业拥有3条相同的生产线,每条生产线每月至多出现一次故障.各条生产线是否出现故障相互独立,且出现故障的概率为.
(1)求该企业每月有且只有1条生产线出现故障的概率;
(2)为提高生产效益,该企业决定招聘名维修工人及时对出现故障的生产线进行维修.已知每名维修工人每月只有及时维修1条生产线的能力,且每月固定工资为1万元.此外,统计表明,每月在不出故障的情况下,每条生产线创造12万元的利润;如果出现故障能及时维修,每条生产线创造8万元的利润;如果出现故障不能及时维修,该生产线将不创造利润,以该企业每月实际获利的期望值为决策依据,在与之中选其一,应选用哪个?(实际获利=生产线创造利润-维修工人工资)