- 《相似》全章复习与巩固--知识讲解(提高) 学案 15 次下载
- 《相似》全章复习与巩固--巩固练习(提高) 试卷 16 次下载
- 锐角三角函数—巩固练习 试卷 16 次下载
- 解直角三角形及其应用--知识讲解 学案 16 次下载
- 解直角三角形及其应用--巩固练习 试卷 14 次下载
人教版九年级下册28.1 锐角三角函数优质学案
展开【学习目标】
1.结合图形理解记忆锐角三角函数定义;
2.会推算30°、45°、60°角的三角函数值,并熟练准确的记住特殊角的三角函数值;
3.理解并能熟练运用“同角三角函数的关系”及“锐角三角函数值随角度变化的规律”.
【要点梳理】
要点一、锐角三角函数的概念
如图所示,在Rt△ABC中,∠C=90°,∠A所对的边BC记为a,叫做∠A的对边,也叫做∠B的邻边,∠B所对的边AC记为b,叫做∠B的对边,也是∠A的邻边,直角C所对的边AB记为c,叫做斜边.
锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即;
锐角A的邻边与斜边的比叫做∠A的余弦,记作csA,即;
锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即.
同理;;.
要点诠释:
(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.
(2)sinA,csA,tanA分别是一个完整的数学符号,是一个整体,不能写成,,
,不能理解成sin与∠A,cs与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成
“tanAEF”;另外,、、常写成、、.
(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.
(4)由锐角三角函数的定义知:
当角度在0°<∠A<90°间变化时,,,tanA>0.
要点二、特殊角的三角函数值
利用三角函数的定义,可求出30°、45°、60°角的各三角函数值,归纳如下:
要点诠释:
(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.
(2)仔细研究表中数值的规律会发现:
、、的值依次为、、,而、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:
①正弦、正切值随锐角度数的增大(或减小)而增大(或减小);
②余弦值随锐角度数的增大(或减小)而减小(或增大).
要点三、锐角三角函数之间的关系
如图所示,在Rt△ABC中,∠C=90°.
(1)互余关系:,;
(2)平方关系:;
(3)倒数关系:或;
(4)商数关系:.
要点诠释:
锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.
【典型例题】
类型一、锐角三角函数值的求解策略
1.(2016•安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是( )
A.2B.C.D.
【思路点拨】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.
【答案】D.
【解析】
解:如图:
,
由勾股定理,得
AC=,AB=2,BC=,
∴△ABC为直角三角形,
∴tan∠B==,
故选:D.
【总结升华】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.
举一反三:
锐角三角函数 395948
例1(1)-(2)【变式】在中,,若,,则 ,
, , , .
【答案】 5 , , ,, .
类型二、特殊角的三角函数值的计算
2.求下列各式的值:
(1)(2015•茂名校级一模) 6tan230°﹣sin60°﹣2sin45°;
(2)(2015•乐陵市模拟) sin60°﹣4cs230°+sin45°•tan60°;
(3)(2015•宝山区一模) +tan60°﹣.
【答案与解析】
解:(1)原式=
=.
(2) 原式=×﹣4×()2+×
=﹣3+
=;
(3) 原式=+﹣
=2+﹣
=3﹣2+2
=.
【总结升华】熟记特殊角的三角函数值或借助两个三角板推算三角函数值,先代入特殊角的三角函数值,再进行化简.
举一反三:锐角三角函数 395948
例1(3)-(4)【变式】在中,,若∠A=45°,则 ,
, , , .
【答案】45°,, ,, .
类型三、锐角三角函数之间的关系
3.(2015•河北模拟)已知△ABC中的∠A与∠B满足(1﹣tanA)2+|sinB﹣|=0
(1)试判断△ABC的形状.
(2)求(1+sinA)2﹣2﹣(3+tanC)0的值.
【答案与解析】
解:(1)∵|1﹣tanA)2+|sinB﹣|=0,
∴tanA=1,sinB=,
∴∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,
∴△ABC是锐角三角形;
(2)∵∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,
∴原式=(1+)2﹣2﹣1
=.
【总结升华】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.
类型四、锐角三角函数的拓展探究与应用
4.如图所示,AB是⊙O的直径,且AB=10,CD是⊙O的弦,AD与BC相交于点P,
若弦CD=6,试求cs∠APC的值.
【答案与解析】
连结AC,∵ AB是⊙O的直径,∴ ∠ACP=90°,
又∵ ∠B=∠D,∠PAB=∠PCD,∴ △PCD∽△PAB,
∴ .
又∵ CD=6,AB=10,
∴ 在Rt△PAC中,
.
【总结升华】直角三角形中,锐角的三角函数等于两边的比值,当这个比值无法直接求解,可结合相似三角形的性质,利用对应线段成比例转换,间接地求出这个比值.
锐角的三角函数是针对直角三角形而言的,故可连结AC,由AB是⊙O的直径得∠ACB=90°,,PC、PA均为未知,而已知CD=6,AB=10,可考虑利用△PCD∽△PAB得.
5.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1①,在△ABC中,AB=AC,顶角A的正对记作sadA,这时.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:
(1)sad60°=________.
(2)对于0<A<180°,∠A的正对值sadA的取值范围是_______.
(3)如图1②,已知sinA=,其中∠A为锐角,试求sadA的值.
【答案与解析】
(1)1; (2)0<sadA<2;
(3)如图2所示,延长AC到D,使AD=AB,连接BD.
设AD=AB=5a,由得BC=3a,
∴ ,
∴ CD=5a-4a=a,,
∴ .
【总结升华】(1)将60°角放在等腰三角形中,底边和腰相等,故sadA=1;(2)在图①中设想AB=AC的长固定,并固定AB让AC绕点A旋转,当∠A接近0°时,BC接近0,则sadA接近0但永远不会等于0,故sadA>0,当∠A接近180°时,BC接近2AB,则sadA接近2但小于2,故sadA<2;(3)将∠A放到等腰三角形中,如图2所示,根据定义可求解.
锐角
30°
45°
1
60°
初中数学人教版九年级下册28.1 锐角三角函数学案: 这是一份初中数学人教版九年级下册28.1 锐角三角函数学案,共7页。学案主要包含了学习目标,要点梳理,典型例题,思路点拨,总结升华,答案与解析等内容,欢迎下载使用。
初中数学人教版九年级下册28.1 锐角三角函数导学案及答案: 这是一份初中数学人教版九年级下册28.1 锐角三角函数导学案及答案,共10页。学案主要包含了学习目标,要点梳理,典型例题等内容,欢迎下载使用。
人教版九年级下册28.1 锐角三角函数导学案: 这是一份人教版九年级下册28.1 锐角三角函数导学案,共24页。学案主要包含了学习目标,要点梳理,典型例题等内容,欢迎下载使用。