数学七年级下册3 简单的轴对称图形获奖ppt课件
展开1.理解并掌握等腰三角形的性质;(重点) 2.探索并掌握等腰三角形的轴对称性及其相关性质, 能初步运用其解决有关问题.(难点).
观察下列各种图形,判断是不是轴对称图形,能找出对称轴吗?
观察下列图片,它们有什么共同的特征?
如图,在△ABC中,AB=AC,则三角形为等腰三角形.
它的各部分名称分别是什么?
(1)相等的两条边都叫腰;
(3)两腰的夹角∠A叫顶角;
(4)腰与底边夹角∠B、∠C叫底角.
剪一剪:把一张长方形的纸按图中的红线对折,并剪去阴影部分(一个直角三角形),再把得到的直角三角形展开,得到的三角形ABC有什么特点?
折一折:△ABC 是轴对称图形吗?它的对称轴是什么?
折痕所在的直线是它的对称轴.
等腰三角形是轴对称图形.
找一找:把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角.
猜一猜: 由这些重合的角,你能发现等腰三角形的性质吗?说一说你的猜想.
(1)等腰三角形是轴对称图形.(2)∠B =∠C. (3)∠BAD=∠CAD,AD为顶角的平分线.(4)∠ADB=∠ADC=90°,AD为底边上的高. (5)BD=CD,AD为底边上的中线.
解:在ΔABC中,∵AD是角平分线,∴∠BAD=∠CAD.在ΔABD和ΔACD中,∵AB=AC,∠BAD=∠CAD,AD=AD,∴ΔABD≌ΔACD.∴BD=CD, ∠ADB=∠ADC=90˚.∴AD是ΔABC的角平分线、底边上的中线、底边上的高.
等腰三角形的顶角平分线、底边上的高和底边上的中线互相重合(简称“三线合一”).
等腰三角形的两个底角相等.
画出任意一个等腰三角形的底角平分线、这个底角所对的腰上的中线和高,看看它们是否重合?
1.等腰三角形的顶角一定是锐角.2.等腰三角形的底角可能是锐角或者直角、 钝角都可以.3.钝角三角形不可能是等腰三角形. 4.等腰三角形的顶角平分线一定垂直底边.5.等腰三角形的角平分线、中线和高互相重合.6.等腰三角形底边上的中线一定平分顶角.
你有哪些办法可以得到一个等腰三角形?与同伴交流.
2.你能尝试用圆规吗?
例1 等腰三角形的一个内角是50°,则这个三角形的底角的大小是( ) A.65°或50° B.80°或40° C.65°或80° D.50°或80°
解析:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.
解 ∵AB=AC, BD=BC=AD,(已知)∴∠ABC=∠C=∠BDC,∠A=∠ABD.(等边对等角)设∠A=x°,∵∠A+∠ABD+∠ADB=180°,又∵∠BDC+∠ADB=180°,∴∠BDC=∠A+∠ABD=2x°.∵∠ABC=∠C=∠BDC=2x°,∴x+2x+2x=180.(三角形内角和等于180°)解得 x=36 .∴∠A=36°,∠C=72°.
例2 如图,在ΔABC中,AB=AC , 点D在AC上,且 BD=BC=AD , 求∠A和∠C的度数.
如图,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.
解:∵AB=AD=DC ∴ ∠B= ∠ADB,∠C= ∠DAC 设 ∠C=x,则 ∠DAC=x, ∠B= ∠ADB= ∠C+ ∠DAC=2x, 在△ABC中, 根据三角形内角和定理,得 2x+x+26°+x=180°, 解得x=38.5°. ∴ ∠C= x=38.5°, ∠B=2x=77°.
例3 已知点D、E在△ABC的边BC上,AB=AC.(1)如图①,若AD=AE,求证:BD=CE;(2)如图②,若BD=CE,F为DE的中点,求证:AF⊥BC.
证明:(1)如图①,过A作AG⊥BC于G.∵AB=AC,AD=AE,∴BG=CG,DG=EG,∴BG-DG=CG-EG,∴BD=CE;(2)∵BD=CE,F为DE的中点,∴BD+DF=CE+EF,∴BF=CF.∵AB=AC,∴AF⊥BC.
方法总结:在等腰三角形有关计算或证明中,有时需要添加辅助线,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.
1.填空:(1)等腰直角三角形的每一个锐角的度数是 ;(2)如果等腰三角形的底角等于40°,那么它的 顶角的度数是_________ ;(3)如果等腰三角形有一个内角等于80°,那么这 个三角形的最小内角等于____________ .
(4)△ ABC中,AB=AC,∠A= 36◦,则∠B= ______, ∠C= ____. (5)△ ABC中,AB=AC,∠B= 36◦,则∠A= ______, ∠C= ____.
方法总结:等边对等角!
2.如图,是由大小不等的等边三角形组成的图案, 请找出它的对称轴.
解:∵OA=AB,∴∠ABO=∠O=15°,∴∠BAO=150°,∴∠BAC=∠ABO+∠O=30°.∵AB=BC,∴∠ACB=∠BAC=30°,∴∠CBO=135°,∴∠CBD=∠O+∠ACB=45°.∵BC=CD,∴∠D=∠CBD=45°,∴∠BCD=90°,∴∠1=180°-∠BCD-∠BCO=60°.
3.如图,∠AOB=15°,且OA=AB=BC=CD.求∠1的度数.
4.如图,在ΔABC中,AB=AC,∠BAC=120°,点D, E是底边上两点,且BD=AD,CE=AE.求∠DAE的度数.
解 :∵AB=AC,∴∠B=∠C,∴∠B=∠C=(180°-120°)÷2=30°.又∵BD=AD,∴∠BAD=∠B=30°.同理,∠CAE=∠C=30°.∴∠DAE=∠BAC-∠BAD-∠CAE=120°-30°-30°=60°.
5.A、B是4×4网格中的格点,网格中的每个小正方形的边长为1,请在图中标出使以A、B、C为顶点的三角形是等腰三角形的所有格点C的位置.
分别以A、B、C为顶角顶点来分类讨论!
北师大版七年级下册3 等可能事件的概率优秀课件ppt: 这是一份北师大版七年级下册3 等可能事件的概率优秀课件ppt,共17页。PPT课件主要包含了学习目标,视频引入,互动探究,正面朝上,反面朝上,具有两个共同特征,议一议,归纳总结,典例精析,2P数字1等内容,欢迎下载使用。
初中数学北师大版七年级下册2 频率的稳定性优秀课件ppt: 这是一份初中数学北师大版七年级下册2 频率的稳定性优秀课件ppt,共25页。PPT课件主要包含了学习目标,导入新课,情境导入,讲授新课,做一做,议一议,典例精析,数学史实,练一练,当堂练习等内容,欢迎下载使用。
数学七年级下册3 简单的轴对称图形优质ppt课件: 这是一份数学七年级下册3 简单的轴对称图形优质ppt课件,共23页。PPT课件主要包含了提炼图形,已知∠AOB,仔细观察步骤,PDPE,OPOP,∴PDPE,应用所具备的条件,定理的作用,证明线段相等,应用格式等内容,欢迎下载使用。