搜索
    上传资料 赚现金
    四川省泸州市2021届高三上学期第一次教学质量诊断性考试 理科数学 (含答案)
    立即下载
    加入资料篮
    四川省泸州市2021届高三上学期第一次教学质量诊断性考试 理科数学 (含答案)01
    四川省泸州市2021届高三上学期第一次教学质量诊断性考试 理科数学 (含答案)02
    四川省泸州市2021届高三上学期第一次教学质量诊断性考试 理科数学 (含答案)03
    还剩12页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省泸州市2021届高三上学期第一次教学质量诊断性考试 理科数学 (含答案)

    展开

    泸州市高2018级第一次教学质量诊断性考试

    数学(理科)

    本试卷分第卷(选择题)和第卷(非选择题)两部分.第12页,第34页.共150分.考试时间120分钟.

    注意事项:

    1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.

    2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题的答案标号涂黑.

    3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚,写在试题卷、草稿纸和答题卡上的非答题区域均无效.

    4.考试结束后,请将本试题卷和答题卡一并上交.

    卷(选择题共60分)

    一、选择题:本大题共有12个小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合要求的.

    1.已知集合,则  

    A    B   C   D

    2的(   

    A.充分但不必要条件      B.必要但不充分条件

    C.充要条件        D.既不充分也不必要条件

    3.已知,则的大小关系正确的是(   

    A  B   C   D

    4.我国的5G通信技术领先世界,5G技术的数学原理之一是著名的香农(Shannon)公式,香农提出并严格证明了在被高斯白噪声干扰的信道中,计算最大信息传送速率的公式,其中是信道带宽(赫兹),是信道内所传信号的平均功率(瓦),是信道内部的高斯噪声功率(瓦),其中叫做信噪比.根据此公式,在不改变的前提下,将信噪比从99提升至,使得大约增加了60%,则的值大约为(参考数据:

    A1559    B3943    C1579    D2512

    5.右图为某旋转体的三视图,则该几何体的侧面积为(   

    A    B    C    D

    6.定义在上的函数满足,当时,,则函数的图象与的图象的交点个数为(   

    A3    B4    C5    D6

    7是函数的图象与轴的两个交点,且两点间距离的最小值为,则的值为(   

    A2    B3    C4    D5

    8.函数(其中是自然对数的底数).的图象大致为(   

    A B

    C D

    9.如图,在长方体中,分别为的中点,分别为的中点,则下列说法错误的是(   

    A.四点在同一平面内

    B.三条直线有公共点

    C.直线与直线不是异面直线

    D.直线上存在点使三点共线

    10已知方程的两根分别为,则下列关系正确的是(   

    A  B   C  D

    11.已知三棱锥中,平面平面,且都是边长为2的等边三角形,则该三棱锥的外接球表面积为(   

    A B C D

    12.已知函数,若存在实数,且,使,则实数的取值范围为(   

    A   B C   D

    卷(非选择题共90分)

    注意事项:

    1)非选择题的答案必须用0.5毫米黑色签字笔直接答在答题卡上,作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚,答在试题卷和草稿纸上无效.

    2)本部分共10个小题,共90分.

    二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题纸上)

    13.已知函数,则的值为______

    14.曲线轴所围成的图形面积为______

    15.在平面直角坐标系中,角与角均以为始边,它们的终边关于轴对称.若,则______

    16.如图,棱长为1的正方体中,为线段上的动点(不含端点),给出下列结论:

    平面平面

    多面体的体积为定值;

    直线所成的角可能为

    可能是钝角三角形.

    其中正确结论的序号是______(填上所有正确结论的序号).

    三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第2223题为选考题,考生根据要求作答.

    (一)必考题:共60分.

    17.已知函数

    )若,求的值;

    )若函数图象上所有点的纵坐标保持不变,横坐标变为原来的倍得函数的图象,且关于的方程上有解,求的取值范围.

    18.已知曲线在点处的切线方程为

    )求的值;

    )判断函数在区间上零点的个数,并证明.

    19的内角的对边分别为.已知

    )求

    )已知,且边上有一点满足,求

    20.如图,在四棱锥中,底面是菱形,是线段上一点(不含),在平面内过点平面于点

    )写出作的步骤(不要求证明);

    )若的中点,求平面与平面所成锐二面角的余弦值.

    21.已知函数,其中是自然对数的底数.

    )求函数的单调递增区间;

    )设关于的不等式恒成立时的最大值为,求的取值范围.

    (二)选考题:共10分.请考生在第2223题中任选一题作答,如果多做,则按所做的第一题计分.

    22.选修4-4:坐标系与参数方程

    在平面直角坐标系中,曲线是圆心在,半径为2的圆,曲线的参数方程为为参数且),以坐标原点为极点,轴正半轴为极轴建立极坐标系.

    )求曲线的极坐标方程;

    )若曲线与坐标轴交于两点,点为线段上任意一点,直线与曲线交于点(异于原点),求的最大值.

    23.选修4-5:不等式选讲

    ,且,已知的最小值为

    )求的值

    )若使得关于的不等式成立,求实数的取值范围.

    泸州市高2018级第一次教学质量诊断性考试

    数学(理科)参考答案及评分意见

    评分说明:

    1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.

    2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度.可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.

    3.解答右侧所注分数,表示考生正确做到这一步应得的累加分数.

    4.只给整数分数,选择题和填空题不给中间分.

    一、选择题

    题号

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    答案

    B

    A

    A

    C

    D

    A

    B

    A

    C

    C

    D

    D

    二、填空题

    133   142    15   16①②④

    三、解答题:

    17.解:()因为

    因为,所以

    所以,即,所以

    )把图象上所有点横坐标变为原来的倍得到函数的图象,

    所以函数的解析式为

    关于的方程上有解求范围,

    等价于求上的值域,

    因为,所以

    所以,故的取值范围为

    18.解:()因为

    所以

    又因为

    曲线在点处的切线方程为

    所以

    上有且只有一个零点,

    因为

    时,

    所以上为单调递增函数且图象连续不断,

    因为

    所以上有且只有一个零点.

    19.解:()由可得:

    ,得

    由正弦定理得

    因为,所以

    所以,因为,所以

    所以,即,所以

    )解法一:设边上的高为边上的高为

    因为

    所以

    所以的内角平分线,所以

    因为,可知

    所以

    所以

    解法二:设,则

    因为

    所以

    所以

    所以

    因为,所以

    ,可知

    所以

    所以

    解法三:设,则

    中,由及余弦定理可得:

    所以

    因为,可知

    中,

    所以

    20.解:()第一步:在平面内过点于点

    第二步:在平面内过点

    第三步:连接即为所求.

    )解法一:因为的中点,,所以的中点,

    ,所以的中点,

    连接交于,连,设在底面的射影为

    因为,所以,即的外心,

    所以重合,

    因为,所以

    ,分别以轴建立空间直角坐标系,

    所以,设平面的法向量为

    ,则

    所以

    因为平面,所以平面平面,又

    所以平面

    为平面的法向量,

    设平面与平面所成锐二面角的大小为

    故平面与平面所成锐二面角的余弦值为

    解法二:延长交于,连接

    因为平面,平面平面平面,所以

    的中点,则的中点,又,所以的中点,

    ,所以

    因为平面,所以平面平面

    ,所以平面

    所以平面

    所以,即平面

    所以为二面角的平面角,

    中,,故

    故平面与平面所成的锐二面角的余弦值为

    21解:()因为

    所以,因为

    所以时,的增区间为

    时,方程的两根为:

    的增区间为

    综上时,的增区间为

    时,的增区间为

    )原不等式分

    因为,所以

    ,令,即

    所以上递增;

    ,即时,

    因为,所以

    ,即,所以上递增,

    所以

    时,

    因为,即

    所以上递减,所以

    ,即时,

    因为上递增,

    所以存在唯一实数,使得,即

    则当时,,即

    时,,即

    上单减,上单增,

    所以

    所以

    ,则

    所以上递增,所以

    综上所述,

    22解:()解法一:设曲线与过极点且垂直于极轴的直线相交于异于极点的点,设曲线上任意点,连接,则

    中,

    解法二:曲线的直角坐标方程为

    所以曲线的极坐标方程为

    )曲线的参数方程为,因为曲线与两坐标轴相交,

    所以点

    所以线段的极坐标方程为

    所以当时,取得最大值

    23.解:()由

    解得,或(舍去),

    当且仅当时取得

    的最小值为2

    )由

    因为使得关于的不等式成立,

    所以,解得:

    的取值范围是

     

     

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map