还剩8页未读,
继续阅读
所属成套资源:【精品试题】高考数学一轮 必刷题 专题(含解析)共70套
成套系列资料,整套一键下载
【精品试题】高考数学一轮必刷题 专题64 随机抽样(含解析)
展开
考点64 随机抽样
1.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )
A.p1=p2<p3 B.p2=p3<p1
C.p1=p3<p2 D.p1=p2=p3
2.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )
A.93 B.123
C.137 D.167
3.某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为( )
A.40 B.36
C.30 D.20
4.现用系统抽样方法从已编号(1~60)的60枚新型导弹中,随机抽取6枚进行试验,则所选取的6枚导弹的编号可能是( )
A.5,10,15,20,25,30 B.2,4,8,16,32,48
C.5,15,25,35,45,55 D.1,12,34,47,51,60
5.某学校高三年级一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1,2,…,60.选取的这6名学生的编号可能是( )
A.1,2,3,4,5,6 B.6,16,26,36,46,56
C.1,2,4,8,16,32 D.3,9,13,27,36,54
6.某班有34位同学,座位号记为01,02,…,34,用下面的随机数表选取5组数作为参加青年志愿者活动的五位同学的座号.选取方法是从随机数表第一行的第6列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座号是( )
49 54 43 54 82 17 37 93 23 78 87 35
20 96 43 84 26 34 91 64 57 24 55 06
88 77 04 74 47 67 21 76 33 50 25 83
92 12 06
A.23 B.09
C.02 D.16
7.将参加夏令营的600名学生编号为001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( )
A.26,16,8 B.25,17,8
C.25,16,9 D.24,17,9
8.某工厂的一、二、三车间在2017年11月份共生产了3 600双皮靴,在出厂前检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a、b、c,且a、b、c成等差数列,则二车间生产的产品数为( )
A.800 B.1 000
C.1 200 D.1 500
9.从一个容量为N的总体中抽取一个容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )
A.p1=p2<p3 B.p2=p3<p1
C.p1=p3<p2 D.p1=p2=p3
10.(2018·陕西西安八校联考)某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将60个同学的成绩按01,02,03,…,60进行编号,然后从随机数表第9行第5列的数开始向右读,则选出的第6个个体是(注:下表为随机数表的第8行和第9行)( )
第8行
第9行
A.07 B.25
C.42 D.52
11.为了解72名学生的学习情况,采用系统抽样的方法,从中抽取容量为8的样本,则分段的间隔为( )
A.9 B.8
C.10 D.7
12.(2018·陕西部分学校摸底检测)某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为42的样本,则应分别抽取老年人、中年人、青年人的人数是( )
A.7,11,18 B.6,12,18
C.6,13,17 D.7,14,21
13.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n人中,抽取35人进行问卷调查.已知高二被抽取的人数为13,则n=( )
A.660 B.720
C.780 D.800
14.从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为( )
A.480 B.481
C.482 D.483
15.某高校有教授120人,副教授100人,讲师80人,助教60人,现用分层抽样的方法从以上所有老师中抽取一个容量为n的样本.已知从讲师中抽取的人数为16,那么n=________.
16.为了解1 200名学生对学校某项教改实验的意见,打算从中抽取一个容量为30的样本,考虑采取系统抽样,则分段的间隔k为________.
17.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m=8,则在第8组中抽取的号码是________.
18.一汽车制造厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):
轿车A
轿车B
轿车C
舒适型
100
150
z
标准型
300
450
600
按类型用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆,则z的值为________.
19.已知某商场新进3 000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋进行检查,将3 000袋奶粉按1,2,…,3 000 随机编号.若第一组抽出的号码是11,则第六十一组抽出的号码为________.
20.高三(2)班现有64名学生,随机编号为0,1,2,…,63,依编号顺序平均分成8组,组号依次为1,2,3,…,8.现用系统抽样方法抽取一个容量为8的样本,若在第一组中随机抽取的号码为5,则在第6组中抽取的号码为________.
21.某学校高一、高二、高三年级的学生人数之比为4∶3∶3,现用分层抽样的方法从该校高中三个年级的学生中抽取一个容量为80的样本,则应从高一年级抽取________名学生.
22.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为________.
23.某校三个年级共有18个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到18,现用系统抽样方法,抽取6个班进行调查.若抽到的编号之和为57,则抽到的最小编号为________.
24.某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山比赛活动.每人都参与而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:
高一年级
高二年级
高三年级
跑步
a
b
c
登山
x
y
z
其中a∶b∶c=2∶3∶5,全校参与登山的人数占总人数的,为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取________人.
25.某校高中三年级的295名学生已经编号为1,2,3,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进行抽取,请写出抽样过程.
26.为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”“锻炼”“看电视”和“其他”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成统计图如图所示.
根据统计图所提供的信息,解答下列问题:
(1)本次共调查了________名市民;
(2)补全条形统计图;
(3)该市共有480万市民,估计该市市民晚饭后1小时内“锻炼”的人数.
考点64 随机抽样
1.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )
A.p1=p2<p3 B.p2=p3<p1
C.p1=p3<p2 D.p1=p2=p3
【答案】D
【解析】由于三种抽样过程中,每个个体被抽到的概率都是相等的,因此p1=p2=p3.
2.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )
A.93 B.123
C.137 D.167
【答案】C
【解析】初中部的女教师人数为110×70%=77,高中部的女教师人数为150×(1-60%)=60,该校女教师的人数为77+60=137,故选C.
3.某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为( )
A.40 B.36
C.30 D.20
【答案】C
【解析】利用分层抽样的比例关系,设从乙社区抽取n户,则=,解得n=30.
4.现用系统抽样方法从已编号(1~60)的60枚新型导弹中,随机抽取6枚进行试验,则所选取的6枚导弹的编号可能是( )
A.5,10,15,20,25,30 B.2,4,8,16,32,48
C.5,15,25,35,45,55 D.1,12,34,47,51,60
【答案】C
【解析】从60枚新型导弹中随机抽取6枚,采用系统抽样间隔应为=10,只有C选项中导弹的编号间隔为10.
5.某学校高三年级一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1,2,…,60.选取的这6名学生的编号可能是( )
A.1,2,3,4,5,6 B.6,16,26,36,46,56
C.1,2,4,8,16,32 D.3,9,13,27,36,54
【答案】B
【解析】由系统抽样知识可知,所取学生编号之间的间距相等且为10,所以应选B.
6.某班有34位同学,座位号记为01,02,…,34,用下面的随机数表选取5组数作为参加青年志愿者活动的五位同学的座号.选取方法是从随机数表第一行的第6列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座号是( )
49 54 43 54 82 17 37 93 23 78 87 35
20 96 43 84 26 34 91 64 57 24 55 06
88 77 04 74 47 67 21 76 33 50 25 83
92 12 06
A.23 B.09
C.02 D.16
【答案】D
【解析】从随机数表第一行的第6列数字3开始,由左到右依次选取两个数字,不超过34的依次为21,32,09,16,17,故第4个志愿者的座号为16.
7.将参加夏令营的600名学生编号为001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( )
A.26,16,8 B.25,17,8
C.25,16,9 D.24,17,9
【答案】B
【解析】由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).
令3+12(k-1)≤300,得k≤,
因此第Ⅰ营区被抽中的人数是25;令300<3+12(k-1)≤495,得
8.某工厂的一、二、三车间在2017年11月份共生产了3 600双皮靴,在出厂前检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a、b、c,且a、b、c成等差数列,则二车间生产的产品数为( )
A.800 B.1 000
C.1 200 D.1 500
【答案】C
【解析】因为a、b、c成等差数列,所以2b=a+c,所以从二车间抽取的产品数占抽取产品总数的,根据分层抽样的性质可知,二车间生产的产品数占产品总数的,所以二车间生产的产品数为3 600×=1 200.故选C.
9.从一个容量为N的总体中抽取一个容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )
A.p1=p2<p3 B.p2=p3<p1
C.p1=p3<p2 D.p1=p2=p3
【答案】D
【解析】根据简单随机抽样、系统抽样和分层抽样的定义可知,无论哪种抽样,每个个体被抽中的概率都是相等的,所以p1=p2=p3.
10.(2018·陕西西安八校联考)某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将60个同学的成绩按01,02,03,…,60进行编号,然后从随机数表第9行第5列的数开始向右读,则选出的第6个个体是(注:下表为随机数表的第8行和第9行)( )
第8行
第9行
A.07 B.25
C.42 D.52
【答案】D
【解析】依题意得,依次选出的个体分别是12,34,29,56,07,52,…,因此选出的第6个个体是52,选D.
11.为了解72名学生的学习情况,采用系统抽样的方法,从中抽取容量为8的样本,则分段的间隔为( )
A.9 B.8
C.10 D.7
【答案】A
【解析】由系统抽样方法知,72人分成8组,故分段间隔为72÷8=9.
12.(2018·陕西部分学校摸底检测)某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为42的样本,则应分别抽取老年人、中年人、青年人的人数是( )
A.7,11,18 B.6,12,18
C.6,13,17 D.7,14,21
【答案】D
【解析】因为该单位共有27+54+81=162(人),样本容量为42,所以应当按=的比例分别从老年人、中年人、青年人中抽取样本,且应分别抽取的人数是7,14,21.故选D.
13.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n人中,抽取35人进行问卷调查.已知高二被抽取的人数为13,则n=( )
A.660 B.720
C.780 D.800
【答案】B
【解析】由已知可得,抽样比为=,从而=,解得n=720.
14.从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为( )
A.480 B.481
C.482 D.483
【答案】C
【解析】根据系统抽样的定义可知样本的编号成等差数列,令a1=7,a2=32,d=25,所以7+25(n-1)≤500.所以n≤20.72,故最大编号为7+25×(20-1)=482.
15.某高校有教授120人,副教授100人,讲师80人,助教60人,现用分层抽样的方法从以上所有老师中抽取一个容量为n的样本.已知从讲师中抽取的人数为16,那么n=________.
【答案】72
【解析】依题意得,=,由此解得n=72.
16.为了解1 200名学生对学校某项教改实验的意见,打算从中抽取一个容量为30的样本,考虑采取系统抽样,则分段的间隔k为________.
【答案】40
【解析】在系统抽样中,确定分段间隔k,对编号进行分段,k=(N为总体的容量,n为样本的容量),所以k===40.
17.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m=8,则在第8组中抽取的号码是________.
【答案】76
【解析】由题意知m=8,k=8,则m+k=16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.
18.一汽车制造厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):
轿车A
轿车B
轿车C
舒适型
100
150
z
标准型
300
450
600
按类型用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆,则z的值为________.
【答案】400
【解析】设该厂这个月共生产轿车n辆,
由题意得=,所以n=2 000,
则z=2 000-100-300-150-450-600=400.
19.已知某商场新进3 000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋进行检查,将3 000袋奶粉按1,2,…,3 000 随机编号.若第一组抽出的号码是11,则第六十一组抽出的号码为________.
【答案】1 211
【解析】由题意知,抽样比为k==20,又第一组抽出的号码是11,则11+60×20=1 211,故第六十一组抽出的号码为1 211.
20.高三(2)班现有64名学生,随机编号为0,1,2,…,63,依编号顺序平均分成8组,组号依次为1,2,3,…,8.现用系统抽样方法抽取一个容量为8的样本,若在第一组中随机抽取的号码为5,则在第6组中抽取的号码为________.
【答案】45
【解析】分组间隔为=8,∵在第一组中随机抽取的号码为5,∴在第6组中抽取的号码为5+5×8=45.
21.某学校高一、高二、高三年级的学生人数之比为4∶3∶3,现用分层抽样的方法从该校高中三个年级的学生中抽取一个容量为80的样本,则应从高一年级抽取________名学生.
【答案】32
【解析】从高一年级抽取的学生人数为80×=32.
22.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为________.
【答案】12
【解析】抽样间隔为=20.设在1,2,…,20中抽取号码x0(x0∈[1,20]),在[481,720]之间抽取的号码记为20k+x0,则481≤20k+x0≤720,k∈N*.∴24≤k+≤36.
∵∈,∴k=24,25,26,…,35,
∴k值共有35-24+1=12(个),即所求人数为12.
23.某校三个年级共有18个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到18,现用系统抽样方法,抽取6个班进行调查.若抽到的编号之和为57,则抽到的最小编号为________.
【答案】2
【解析】系统抽样的间隔为=3.
设抽到最小编号为x,
则x+(3+x)+(6+x)+(9+x)+(12+x)+(15+x)=57.解得x=2.
24.某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山比赛活动.每人都参与而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:
高一年级
高二年级
高三年级
跑步
a
b
c
登山
x
y
z
其中a∶b∶c=2∶3∶5,全校参与登山的人数占总人数的,为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取________人.
【答案】36
【解析】根据题意可知样本中参与跑步的人数为200×=120,所以从高二年级参与跑步的学生中应抽取的人数为120×=36(人).
25.某校高中三年级的295名学生已经编号为1,2,3,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进行抽取,请写出抽样过程.
【解析】按1∶5的比例抽样,295÷5=59.
第一步,把295名同学分成59组,每组5人.第一组是编号为1~5的5名学生,第二组是编号为6~10的5名学生,…,依次类推,第59组是编号为291~295的5名学生.
第二步,采用简单随机抽样,从第一组5名学生中随机抽取1名,不妨设其编号为k(1≤k≤5).
第三步,从以后各段中依次抽取编号为k+5i(i=1,2,3,…,58)的学生,再加上从第一段中抽取的编号为k的学生,得到一个容量为59的样本.
26.为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”“锻炼”“看电视”和“其他”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成统计图如图所示.
根据统计图所提供的信息,解答下列问题:
(1)本次共调查了________名市民;
(2)补全条形统计图;
(3)该市共有480万市民,估计该市市民晚饭后1小时内“锻炼”的人数.
【答案】(1)2 000. (2) (3)96(万)
【解析】(1)本次共调查的市民人数为800÷40%=2 000.
(2)晚饭后选择“其他”的人数为2 000×28%=560,晚饭后选择“锻炼”的人数为2 000-800-240-560=400.
将条形统计图补充完整,如图所示.
(3)晚饭后选择“锻炼”的人数所占的比例为:400÷2 000=20%,
该市市民晚饭后1小时内锻炼的人数为:480×20%=96(万).
1.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )
A.p1=p2<p3 B.p2=p3<p1
C.p1=p3<p2 D.p1=p2=p3
2.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )
A.93 B.123
C.137 D.167
3.某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为( )
A.40 B.36
C.30 D.20
4.现用系统抽样方法从已编号(1~60)的60枚新型导弹中,随机抽取6枚进行试验,则所选取的6枚导弹的编号可能是( )
A.5,10,15,20,25,30 B.2,4,8,16,32,48
C.5,15,25,35,45,55 D.1,12,34,47,51,60
5.某学校高三年级一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1,2,…,60.选取的这6名学生的编号可能是( )
A.1,2,3,4,5,6 B.6,16,26,36,46,56
C.1,2,4,8,16,32 D.3,9,13,27,36,54
6.某班有34位同学,座位号记为01,02,…,34,用下面的随机数表选取5组数作为参加青年志愿者活动的五位同学的座号.选取方法是从随机数表第一行的第6列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座号是( )
49 54 43 54 82 17 37 93 23 78 87 35
20 96 43 84 26 34 91 64 57 24 55 06
88 77 04 74 47 67 21 76 33 50 25 83
92 12 06
A.23 B.09
C.02 D.16
7.将参加夏令营的600名学生编号为001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( )
A.26,16,8 B.25,17,8
C.25,16,9 D.24,17,9
8.某工厂的一、二、三车间在2017年11月份共生产了3 600双皮靴,在出厂前检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a、b、c,且a、b、c成等差数列,则二车间生产的产品数为( )
A.800 B.1 000
C.1 200 D.1 500
9.从一个容量为N的总体中抽取一个容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )
A.p1=p2<p3 B.p2=p3<p1
C.p1=p3<p2 D.p1=p2=p3
10.(2018·陕西西安八校联考)某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将60个同学的成绩按01,02,03,…,60进行编号,然后从随机数表第9行第5列的数开始向右读,则选出的第6个个体是(注:下表为随机数表的第8行和第9行)( )
第8行
第9行
A.07 B.25
C.42 D.52
11.为了解72名学生的学习情况,采用系统抽样的方法,从中抽取容量为8的样本,则分段的间隔为( )
A.9 B.8
C.10 D.7
12.(2018·陕西部分学校摸底检测)某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为42的样本,则应分别抽取老年人、中年人、青年人的人数是( )
A.7,11,18 B.6,12,18
C.6,13,17 D.7,14,21
13.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n人中,抽取35人进行问卷调查.已知高二被抽取的人数为13,则n=( )
A.660 B.720
C.780 D.800
14.从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为( )
A.480 B.481
C.482 D.483
15.某高校有教授120人,副教授100人,讲师80人,助教60人,现用分层抽样的方法从以上所有老师中抽取一个容量为n的样本.已知从讲师中抽取的人数为16,那么n=________.
16.为了解1 200名学生对学校某项教改实验的意见,打算从中抽取一个容量为30的样本,考虑采取系统抽样,则分段的间隔k为________.
17.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m=8,则在第8组中抽取的号码是________.
18.一汽车制造厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):
轿车A
轿车B
轿车C
舒适型
100
150
z
标准型
300
450
600
按类型用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆,则z的值为________.
19.已知某商场新进3 000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋进行检查,将3 000袋奶粉按1,2,…,3 000 随机编号.若第一组抽出的号码是11,则第六十一组抽出的号码为________.
20.高三(2)班现有64名学生,随机编号为0,1,2,…,63,依编号顺序平均分成8组,组号依次为1,2,3,…,8.现用系统抽样方法抽取一个容量为8的样本,若在第一组中随机抽取的号码为5,则在第6组中抽取的号码为________.
21.某学校高一、高二、高三年级的学生人数之比为4∶3∶3,现用分层抽样的方法从该校高中三个年级的学生中抽取一个容量为80的样本,则应从高一年级抽取________名学生.
22.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为________.
23.某校三个年级共有18个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到18,现用系统抽样方法,抽取6个班进行调查.若抽到的编号之和为57,则抽到的最小编号为________.
24.某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山比赛活动.每人都参与而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:
高一年级
高二年级
高三年级
跑步
a
b
c
登山
x
y
z
其中a∶b∶c=2∶3∶5,全校参与登山的人数占总人数的,为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取________人.
25.某校高中三年级的295名学生已经编号为1,2,3,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进行抽取,请写出抽样过程.
26.为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”“锻炼”“看电视”和“其他”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成统计图如图所示.
根据统计图所提供的信息,解答下列问题:
(1)本次共调查了________名市民;
(2)补全条形统计图;
(3)该市共有480万市民,估计该市市民晚饭后1小时内“锻炼”的人数.
考点64 随机抽样
1.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )
A.p1=p2<p3 B.p2=p3<p1
C.p1=p3<p2 D.p1=p2=p3
【答案】D
【解析】由于三种抽样过程中,每个个体被抽到的概率都是相等的,因此p1=p2=p3.
2.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )
A.93 B.123
C.137 D.167
【答案】C
【解析】初中部的女教师人数为110×70%=77,高中部的女教师人数为150×(1-60%)=60,该校女教师的人数为77+60=137,故选C.
3.某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为( )
A.40 B.36
C.30 D.20
【答案】C
【解析】利用分层抽样的比例关系,设从乙社区抽取n户,则=,解得n=30.
4.现用系统抽样方法从已编号(1~60)的60枚新型导弹中,随机抽取6枚进行试验,则所选取的6枚导弹的编号可能是( )
A.5,10,15,20,25,30 B.2,4,8,16,32,48
C.5,15,25,35,45,55 D.1,12,34,47,51,60
【答案】C
【解析】从60枚新型导弹中随机抽取6枚,采用系统抽样间隔应为=10,只有C选项中导弹的编号间隔为10.
5.某学校高三年级一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1,2,…,60.选取的这6名学生的编号可能是( )
A.1,2,3,4,5,6 B.6,16,26,36,46,56
C.1,2,4,8,16,32 D.3,9,13,27,36,54
【答案】B
【解析】由系统抽样知识可知,所取学生编号之间的间距相等且为10,所以应选B.
6.某班有34位同学,座位号记为01,02,…,34,用下面的随机数表选取5组数作为参加青年志愿者活动的五位同学的座号.选取方法是从随机数表第一行的第6列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座号是( )
49 54 43 54 82 17 37 93 23 78 87 35
20 96 43 84 26 34 91 64 57 24 55 06
88 77 04 74 47 67 21 76 33 50 25 83
92 12 06
A.23 B.09
C.02 D.16
【答案】D
【解析】从随机数表第一行的第6列数字3开始,由左到右依次选取两个数字,不超过34的依次为21,32,09,16,17,故第4个志愿者的座号为16.
7.将参加夏令营的600名学生编号为001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( )
A.26,16,8 B.25,17,8
C.25,16,9 D.24,17,9
【答案】B
【解析】由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).
令3+12(k-1)≤300,得k≤,
因此第Ⅰ营区被抽中的人数是25;令300<3+12(k-1)≤495,得
A.800 B.1 000
C.1 200 D.1 500
【答案】C
【解析】因为a、b、c成等差数列,所以2b=a+c,所以从二车间抽取的产品数占抽取产品总数的,根据分层抽样的性质可知,二车间生产的产品数占产品总数的,所以二车间生产的产品数为3 600×=1 200.故选C.
9.从一个容量为N的总体中抽取一个容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )
A.p1=p2<p3 B.p2=p3<p1
C.p1=p3<p2 D.p1=p2=p3
【答案】D
【解析】根据简单随机抽样、系统抽样和分层抽样的定义可知,无论哪种抽样,每个个体被抽中的概率都是相等的,所以p1=p2=p3.
10.(2018·陕西西安八校联考)某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将60个同学的成绩按01,02,03,…,60进行编号,然后从随机数表第9行第5列的数开始向右读,则选出的第6个个体是(注:下表为随机数表的第8行和第9行)( )
第8行
第9行
A.07 B.25
C.42 D.52
【答案】D
【解析】依题意得,依次选出的个体分别是12,34,29,56,07,52,…,因此选出的第6个个体是52,选D.
11.为了解72名学生的学习情况,采用系统抽样的方法,从中抽取容量为8的样本,则分段的间隔为( )
A.9 B.8
C.10 D.7
【答案】A
【解析】由系统抽样方法知,72人分成8组,故分段间隔为72÷8=9.
12.(2018·陕西部分学校摸底检测)某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为42的样本,则应分别抽取老年人、中年人、青年人的人数是( )
A.7,11,18 B.6,12,18
C.6,13,17 D.7,14,21
【答案】D
【解析】因为该单位共有27+54+81=162(人),样本容量为42,所以应当按=的比例分别从老年人、中年人、青年人中抽取样本,且应分别抽取的人数是7,14,21.故选D.
13.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n人中,抽取35人进行问卷调查.已知高二被抽取的人数为13,则n=( )
A.660 B.720
C.780 D.800
【答案】B
【解析】由已知可得,抽样比为=,从而=,解得n=720.
14.从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为( )
A.480 B.481
C.482 D.483
【答案】C
【解析】根据系统抽样的定义可知样本的编号成等差数列,令a1=7,a2=32,d=25,所以7+25(n-1)≤500.所以n≤20.72,故最大编号为7+25×(20-1)=482.
15.某高校有教授120人,副教授100人,讲师80人,助教60人,现用分层抽样的方法从以上所有老师中抽取一个容量为n的样本.已知从讲师中抽取的人数为16,那么n=________.
【答案】72
【解析】依题意得,=,由此解得n=72.
16.为了解1 200名学生对学校某项教改实验的意见,打算从中抽取一个容量为30的样本,考虑采取系统抽样,则分段的间隔k为________.
【答案】40
【解析】在系统抽样中,确定分段间隔k,对编号进行分段,k=(N为总体的容量,n为样本的容量),所以k===40.
17.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m=8,则在第8组中抽取的号码是________.
【答案】76
【解析】由题意知m=8,k=8,则m+k=16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.
18.一汽车制造厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):
轿车A
轿车B
轿车C
舒适型
100
150
z
标准型
300
450
600
按类型用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆,则z的值为________.
【答案】400
【解析】设该厂这个月共生产轿车n辆,
由题意得=,所以n=2 000,
则z=2 000-100-300-150-450-600=400.
19.已知某商场新进3 000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋进行检查,将3 000袋奶粉按1,2,…,3 000 随机编号.若第一组抽出的号码是11,则第六十一组抽出的号码为________.
【答案】1 211
【解析】由题意知,抽样比为k==20,又第一组抽出的号码是11,则11+60×20=1 211,故第六十一组抽出的号码为1 211.
20.高三(2)班现有64名学生,随机编号为0,1,2,…,63,依编号顺序平均分成8组,组号依次为1,2,3,…,8.现用系统抽样方法抽取一个容量为8的样本,若在第一组中随机抽取的号码为5,则在第6组中抽取的号码为________.
【答案】45
【解析】分组间隔为=8,∵在第一组中随机抽取的号码为5,∴在第6组中抽取的号码为5+5×8=45.
21.某学校高一、高二、高三年级的学生人数之比为4∶3∶3,现用分层抽样的方法从该校高中三个年级的学生中抽取一个容量为80的样本,则应从高一年级抽取________名学生.
【答案】32
【解析】从高一年级抽取的学生人数为80×=32.
22.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为________.
【答案】12
【解析】抽样间隔为=20.设在1,2,…,20中抽取号码x0(x0∈[1,20]),在[481,720]之间抽取的号码记为20k+x0,则481≤20k+x0≤720,k∈N*.∴24≤k+≤36.
∵∈,∴k=24,25,26,…,35,
∴k值共有35-24+1=12(个),即所求人数为12.
23.某校三个年级共有18个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到18,现用系统抽样方法,抽取6个班进行调查.若抽到的编号之和为57,则抽到的最小编号为________.
【答案】2
【解析】系统抽样的间隔为=3.
设抽到最小编号为x,
则x+(3+x)+(6+x)+(9+x)+(12+x)+(15+x)=57.解得x=2.
24.某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山比赛活动.每人都参与而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:
高一年级
高二年级
高三年级
跑步
a
b
c
登山
x
y
z
其中a∶b∶c=2∶3∶5,全校参与登山的人数占总人数的,为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取________人.
【答案】36
【解析】根据题意可知样本中参与跑步的人数为200×=120,所以从高二年级参与跑步的学生中应抽取的人数为120×=36(人).
25.某校高中三年级的295名学生已经编号为1,2,3,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进行抽取,请写出抽样过程.
【解析】按1∶5的比例抽样,295÷5=59.
第一步,把295名同学分成59组,每组5人.第一组是编号为1~5的5名学生,第二组是编号为6~10的5名学生,…,依次类推,第59组是编号为291~295的5名学生.
第二步,采用简单随机抽样,从第一组5名学生中随机抽取1名,不妨设其编号为k(1≤k≤5).
第三步,从以后各段中依次抽取编号为k+5i(i=1,2,3,…,58)的学生,再加上从第一段中抽取的编号为k的学生,得到一个容量为59的样本.
26.为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”“锻炼”“看电视”和“其他”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成统计图如图所示.
根据统计图所提供的信息,解答下列问题:
(1)本次共调查了________名市民;
(2)补全条形统计图;
(3)该市共有480万市民,估计该市市民晚饭后1小时内“锻炼”的人数.
【答案】(1)2 000. (2) (3)96(万)
【解析】(1)本次共调查的市民人数为800÷40%=2 000.
(2)晚饭后选择“其他”的人数为2 000×28%=560,晚饭后选择“锻炼”的人数为2 000-800-240-560=400.
将条形统计图补充完整,如图所示.
(3)晚饭后选择“锻炼”的人数所占的比例为:400÷2 000=20%,
该市市民晚饭后1小时内锻炼的人数为:480×20%=96(万).
相关资料
更多