还剩19页未读,
继续阅读
人教版八年级(上)期中考试数学试卷 解析版
展开
八年级(上)期中数学试卷
一、选择题(共10小题30分)
1.2020年全国上下抗击疫情,众志成城,下列防疫标志图形中是轴对称图形的是( )
A. B.
C. D.
2.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为( )
A.16 B.14 C.12 D.10
3.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若BD=1,CF=3,则AB的长是( )
A.6 B. C.3 D.4
4.一个n边形的每一个外角都是72°,则n等于( )
A.3 B.4 C.5 D.6
5.如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B的对应点B'的坐标为( )
A.(1,7) B.(0,5) C.(3,4) D.(﹣3,2)
6.如图,在△ABC中,∠ACB=90°,点D在AB上,将△BDC沿CD折叠,点B落在AC边上的点B′处,若∠ADB′=20°,则∠A的度数为( )
A.20° B.25° C.35° D.40°
7.等腰三角形其中两条边的长度为5和11,则该等腰三角形的周长为( )
A.21 B.27 C.21或32 D.21或27
8.如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点F,若BF=AC,∠CAD=25°,则∠ABE的度数为( )
A.30° B.15° C.25° D.20°
9.如图,在△ABC中,DE垂直平分BC,分别交BC、AB于D、E,连接CE,BF平分∠ABC,交CE于F,若BE=AC,∠ACE=12°,则∠EFB的度数为( )
A.58° B.63° C.67° D.70°
10.如图所示,在平面直角坐标系中,点A(3,1),点P在x轴上,若以P、O、A为顶点的三角形是等腰三角形,则满足条件的点P共有( )
A.2 个 B.3 个 C.4 个 D.5 个
二、填空题(共5小题15分)
11.在平面直角坐标系中,点A(2,﹣3)与点B(a,b)关于y轴对称,则a﹣b= .
12.如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3,△ABD的周长为13,则△ABC的周长为 .
13.如图,有一张四边形纸片ABCD,AD∥BC,将它沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠GHB=80°,则∠AGE等于 .
14.如图,在四边形ABCD中,AB∥DC,E为BC的中点,连接DE、AE,AE⊥DE,延长DE交AB的延长线于点F.若AB=5,CD=3,则AD的长为 .
15.如图,在△ABC中,AB=AC=24厘米,BC=16厘米,点D为AB的中点,点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为 厘米/秒时,能够在某一时刻使△BPD与△CQP全等.
三.解答题(共8小题75分)
16.(8分)如图,已知在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,求∠AEB的度数.
17.(9分)如图,在平面直角坐标系中,每个小正方形的边长均为1,点A的坐标为(﹣2,3),点B的坐标为(﹣3,1),点C的坐标为(1,﹣2).
(1)作出△ABC关于y轴对称的△A'B'C'(其中A',B',C'分别是A,B,C的对应点,不写画法).
(2)直接写出A',B',C'三点的坐标.
(3)在x轴上求作一点P,使PA+PB的值最小.(简要写出作图步骤)
18.(9分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.
(1)求证:△AEC≌△BED;
(2)若∠1=46°,求∠BDE的度数.
19.(9分)如图,在△ABC中,∠C=90°,AB的垂直平分线交AC于点D,垂足为E,若∠A=30°,CD=2.
(1)求∠BDC的度数;
(2)求BD的长.
20.(9分)某大学计划为新生配备如图1所示的折叠凳图2是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD的长相等,O是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30cm,由以上信息能求出CB的长度吗?如果能,请求出BC的长度,如果不能,请你说明理由.
21.(10分)已知,如图,△ABC和△BDE都是等边三角形,且点D在AC上.
(1)求证:△DBC≌△EBA;
(2)直接写出AE,AD和AB之间的关系.
22.(10分)已知:如图,∠XOY=90°,点A、B分别在射线OX、OY上移动(不与点O重合),BE是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C.
(1)当∠OAB=40°时,∠ACB= 度;
(2)随点A、B的移动,试问∠ACB的大小是否变化?如果保持不变,请给出证明;如果发生变化,请求出变化范围.
23.(11分)如图1,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,AD=8cm,DE=5cm.
(1)求BE的长;
(2)其它条件不变的前提下,将CE所在直线旋转到△ABC的外部(如图2),请你猜想AD,DE,BE三者之间的数量关系,直接写出结论,不需证明.
(3)如图3,将(1)中的条件改为:在△ABC中,AC=BC,D,C,E三点在同一条直线上,并且有∠BEC=∠ADC=∠BCA=α,其中α为任意钝角,那么(2)中你的猜想是否还成立?若成立,请证明;若不成立,请说明理由.
2020-2021学年河南省信阳市罗山县八年级(上)期中数学试卷
参考答案与试题解析
一、选择题(共10小题30分)
1.2020年全国上下抗击疫情,众志成城,下列防疫标志图形中是轴对称图形的是( )
A. B.
C. D.
【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.
【解答】解:A、不是轴对称图形,故此选项不合题意;
B、不是轴对称图形,故此选项不合题意;
C、不是轴对称图形,故此选项不合题意;
D、是轴对称图形,故此选项符合题意;
故选:D.
2.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为( )
A.16 B.14 C.12 D.10
【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.
【解答】解:第三边的取值范围是大于4且小于8,又第三边是偶数,故第三边是6.
则该三角形的周长是14.
故选:B.
3.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若BD=1,CF=3,则AB的长是( )
A.6 B. C.3 D.4
【分析】由“AAS”可证△ADE≌△CFE,可得CF=AD=3,即可求解.
【解答】解:∵FC∥AB,
∴∠A=∠ACF,∠F=∠ADF,
又∵DE=EF,
∴△ADE≌△CFE(AAS),
∴CF=AD=3,
∴AB=AD+BD=4,
故选:D.
4.一个n边形的每一个外角都是72°,则n等于( )
A.3 B.4 C.5 D.6
【分析】先判断出此多边形是正多边形,然后根据正多边形的边数等于360°除以每一个外角的度数计算即可得解.
【解答】解:∵多边形的每一个外角都是72°,
∴此多边形是正多边形,
360°÷72°=5,
所以,它的边数是5.
故选:C.
5.如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B的对应点B'的坐标为( )
A.(1,7) B.(0,5) C.(3,4) D.(﹣3,2)
【分析】根据轴对称的性质和平移规律求得即可.
【解答】解:由坐标系可得B(﹣3,1),将△ABC先沿y轴翻折得到B点对应点为(3,1),再向上平移3个单位长度,点B的对应点B'的坐标为(3,1+3),
即(3,4),
故选:C.
6.如图,在△ABC中,∠ACB=90°,点D在AB上,将△BDC沿CD折叠,点B落在AC边上的点B′处,若∠ADB′=20°,则∠A的度数为( )
A.20° B.25° C.35° D.40°
【分析】利用翻折不变性,三角形内角和定理和三角形外角的性质即可解决问题.
【解答】解:∵∠ACB=90°,
∴∠A+∠B=90°,
∵△CDB′是由△CDB翻折得到,
∴∠CB′D=∠B,
∵∠CB′D=∠A+∠ADB′=∠A+20°,
∴∠A+∠A+20°=90°,
解得∠A=35°.
故选:C.
7.等腰三角形其中两条边的长度为5和11,则该等腰三角形的周长为( )
A.21 B.27 C.21或32 D.21或27
【分析】分两种情况讨论,利用等腰三角形的性质可求解.
【解答】解:若5为腰长,则三边为5,5,11,
∵5+5<11,
∴5,5,11不能构成三角形,
若11为腰长,则三边为5,11,11,
∵5+11>11,
∴等腰三角形的周长为5+11+11=27,
故选:B.
8.如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点F,若BF=AC,∠CAD=25°,则∠ABE的度数为( )
A.30° B.15° C.25° D.20°
【分析】利用全等三角形的性质即可解决问题;
【解答】解:∵AD⊥BC,
∴∠BDF=∠ADC,
又∵∠BFD=∠AFE,
∴∠CAD=∠FBD,
在△BDF和△ADC中
,
∴△BDF≌△ADC (AAS)
∴∠DBF=∠CAD=25°,
∵DB=DA,∠ADB=90°,
∴∠ABD=45°,
∴∠ABE=∠ABD﹣∠DBF=20°
故选:D.
9.如图,在△ABC中,DE垂直平分BC,分别交BC、AB于D、E,连接CE,BF平分∠ABC,交CE于F,若BE=AC,∠ACE=12°,则∠EFB的度数为( )
A.58° B.63° C.67° D.70°
【分析】根据线段垂直平分线上的性质得到EB=EC,根据等腰三角形的性质得到∠EBC=∠ECB,根据三角形内角和定理、三角形的外角性质计算,得到答案.
【解答】解:∵DE垂直平分BC,
∴EB=EC,
∴∠EBC=∠ECB,
∵EB=EC,BE=AC,
∴AC=EC,
∴∠AEC=∠EAC=×(180°﹣12°)=84°,
∴∠EBC=∠ECB=∠AEC=42°,
∵BF平分∠ABC,
∴∠EBF=∠CBF=21°,
∴∠EFB=∠AEC﹣∠EBF=63°,
故选:B.
10.如图所示,在平面直角坐标系中,点A(3,1),点P在x轴上,若以P、O、A为顶点的三角形是等腰三角形,则满足条件的点P共有( )
A.2 个 B.3 个 C.4 个 D.5 个
【分析】分别以点O、A为圆心,以OA的长度为半径画弧,与x轴的交点即为所求的点P的位置.
【解答】解:如图,以点O、A为圆心,以OA的长度为半径画弧,OA的垂直平分线与x轴的交点有4个.
故选:C.
二、填空题(共5小题15分)
11.在平面直角坐标系中,点A(2,﹣3)与点B(a,b)关于y轴对称,则a﹣b= 1 .
【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出a、b的值,然后代入计算即可得解.
【解答】解:∵点A(2,﹣3)与点B(a,b)关于y轴对称,
∴a=﹣2,b=﹣3,
∴a﹣b=﹣2+3=1.
故答案为:1.
12.如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3,△ABD的周长为13,则△ABC的周长为 19 .
【分析】利用线段的垂直平分线的性质即可解决问题.
【解答】解:∵DE垂直平分线段AC,
∴DA=DC,AE+EC=6,
∵AB+AD+BD=13,
∴AB+BD+DC=13,
∴△ABC的周长=AB+BD+BC+AC=13+6=19,
故答案为:19.
13.如图,有一张四边形纸片ABCD,AD∥BC,将它沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠GHB=80°,则∠AGE等于 20° .
【分析】根据平行线的性质可得∠DGH=∠GHB=80°,再根据折叠的性质可得∠EGH=∠DGH=80°,然后根据平角的定义求解即可.
【解答】解:∵AD∥BC,
∴∠DGH=∠GHB=80°,
由折叠的性质可得∠EGH=∠DGH=80°,
∴∠AGE=180°﹣∠EGH﹣∠DGH=180°﹣80°﹣80°=20°.
故答案为:20°.
14.如图,在四边形ABCD中,AB∥DC,E为BC的中点,连接DE、AE,AE⊥DE,延长DE交AB的延长线于点F.若AB=5,CD=3,则AD的长为 8 .
【分析】由“AAS”可证△BEF≌△CED,可得EF=DE,BF=CD=3,由线段垂直平分线的性质可得AD=AF=8.
【解答】解:∵E为BC的中点,
∴BE=EC,
∵AB∥CD,
∴∠F=∠CDE,且∠BEF=∠CED,BE=EC,
∴△BEF≌△CED(AAS)
∴EF=DE,BF=CD=3,
∴AF=AB+BF=8,
∵AE⊥DE,EF=DE,
∴AF=AD=8.
15.如图,在△ABC中,AB=AC=24厘米,BC=16厘米,点D为AB的中点,点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为 4或6 厘米/秒时,能够在某一时刻使△BPD与△CQP全等.
【分析】首先求出BD的长,要使△BPD与△CQP全等,必须BD=CP或BP=CP,得出方程12=16﹣4x或4x=16﹣4x,求出方程的解即可.
【解答】解:设经过x秒后,使△BPD与△CQP全等,
∵AB=AC=24厘米,点D为AB的中点,
∴BD=12厘米,
∵∠ABC=∠ACB,
∴要使△BPD与△CQP全等,必须BD=CP或BP=CP,
即12=16﹣4x或4x=16﹣4x,
解得:x=1或x=2,
x=1时,BP=CQ=4,4÷1=4;
x=2时,BD=CQ=12,12÷2=6;
即点Q的运动速度是4或6,
故答案为:4或6
三.解答题(共8小题75分)
16.(8分)如图,已知在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,求∠AEB的度数.
【分析】根据平行线的性质和三角形外角的性质即可得到结论.
【解答】解:∵BE∥AD,
∴∠ABE=∠BAD=20°,
∵BE平分∠ABC,
∴∠EBC=∠ABE=20°,
∵∠C=90°,
∴∠AEB=∠C+∠CBE=90°+20°=110°.
17.(9分)如图,在平面直角坐标系中,每个小正方形的边长均为1,点A的坐标为(﹣2,3),点B的坐标为(﹣3,1),点C的坐标为(1,﹣2).
(1)作出△ABC关于y轴对称的△A'B'C'(其中A',B',C'分别是A,B,C的对应点,不写画法).
(2)直接写出A',B',C'三点的坐标.
(3)在x轴上求作一点P,使PA+PB的值最小.(简要写出作图步骤)
【分析】(1)分别作出三个顶点关于x轴的对称点,再首尾顺次连接即可得;
(2)根据所作图形可得各顶点坐标;
(3)找到点B关于x轴的对称点B'',连接AB''交x轴于点P,连接PB,此时PA+PB的值最小.
【解答】解:(1)如图所示,△A'B'C'即为所求;
(2)A'(2,3),B'(3,1),C'(﹣1,﹣2);
(3)如图所示,P点即为所求.
18.(9分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.
(1)求证:△AEC≌△BED;
(2)若∠1=46°,求∠BDE的度数.
【分析】(1)根据全等三角形的判定即可判断△AEC≌△BED;
(2)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数;
【解答】解:(1)证明:∵AE和BD相交于点O,
∴∠AOD=∠BOE.
在△AOD和△BOE中,∠A=∠B,
∴∠BEO=∠2.
又∵∠1=∠2,
∴∠1=∠BEO,
∴∠AEC=∠BED.
在△AEC和△BED中,
,
∴△AEC≌△BED(ASA).
(2)∵△AEC≌△BED
∴DE=CE
∴∠EDC=∠C
∵∠1=46°
∴∠EDC=∠C=67°
∵△AEC≌△BED
∴∠BDE=∠C=67°
19.(9分)如图,在△ABC中,∠C=90°,AB的垂直平分线交AC于点D,垂足为E,若∠A=30°,CD=2.
(1)求∠BDC的度数;
(2)求BD的长.
【分析】(1)由于AB的垂直平分线交AC于点D,根据线段的垂直平方的性质得到DA=DB,然后根据等腰三角形的性质推出∠DBE=∠A,然后利用已知条件即可求出∠BDC的度数;
(2)利用已知条件和30°的角所对的直角边等于斜边的一半即可求出BD的长.
【解答】解:(1)∵DE垂直平分AB,
∴DA=DB,
∴∠DBE=∠A=30°,
∴∠BDC=60°;
(2)在Rt△BDC中,∵∠BDC=60°,
∴∠DBC=30°,
∴BD=2CD=4.
20.(9分)某大学计划为新生配备如图1所示的折叠凳图2是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD的长相等,O是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30cm,由以上信息能求出CB的长度吗?如果能,请求出BC的长度,如果不能,请你说明理由.
【分析】根据中点定义求出OA=OB,OC=OD,然后利用“边角边”证明△AOD和△BOC全等,根据全等三角形对应边相等即可证明.
【解答】解:∵O是AB、CD的中点,
∴OA=OB,OC=OD,
在△AOD和△BOC中,,
∴△AOD≌△BOC(SAS),
∴CB=AD,
∵AD=30cm,
∴CB=30cm.
21.(10分)已知,如图,△ABC和△BDE都是等边三角形,且点D在AC上.
(1)求证:△DBC≌△EBA;
(2)直接写出AE,AD和AB之间的关系.
【分析】(1)由“SAS”可证△DBC≌△EBA;
(2)由全等三角形的性质可求解.
【解答】(1)证明:∵△ABC和△BDE都是等边三角形,
∴AB=BC,BE=BD,∠ABC=∠DBE=∠C=60°,
∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,
∴∠DBC=∠EBA,
在△DBC和△EBA中,
,
∴△DBC≌△EBA(SAS);
∴∠C=∠EAB=∠ABC,
∴EA∥BC
(2)解:AE+AD=AB,理由如下:
∵△DBC≌△EBA,
∴AE=CD,
∵AD+CD=AC=AB,
∴AE+AD=AB.
22.(10分)已知:如图,∠XOY=90°,点A、B分别在射线OX、OY上移动(不与点O重合),BE是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C.
(1)当∠OAB=40°时,∠ACB= 45 度;
(2)随点A、B的移动,试问∠ACB的大小是否变化?如果保持不变,请给出证明;如果发生变化,请求出变化范围.
【分析】(1)先利用角平分线得出∠CAB=∠OAB,∠EBA=∠YBA,再利用三角形的外角的性质即可得出结论;
(2)先利用角平分线得出∠CAB=∠OAB,∠EBA=∠YBA,再利用三角形的外角的性质即可得出结论.
【解答】解:(1)∵∠XOY=90°,∠OAB=40°,
∴∠ABY=130°,
∵AC平分∠OAB,BE平分∠YBA,
∴∠CAB=∠OAB=20°,∠EBA=∠YBA=65°,
∵∠EBA=∠C+∠CAB,
∴∠C=∠EBA﹣∠CAB=45°,
故答案为:45;
(2)∠ACB的大小不变化.
理由:∵AC平分∠OAB,BE平分∠YBA,
∴∠CAB=∠OAB,∠EBA=∠YBA,
∵∠EBA=∠C+∠CAB,
∴∠C=∠EBA﹣∠CAB=∠YBA﹣∠OAB=(∠YBA﹣∠OAB),
∵∠YBA﹣∠OAB=90°,
∴∠C=×90°=45°,
即:∠ACB的大小不发生变化.
23.(11分)如图1,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,AD=8cm,DE=5cm.
(1)求BE的长;
(2)其它条件不变的前提下,将CE所在直线旋转到△ABC的外部(如图2),请你猜想AD,DE,BE三者之间的数量关系,直接写出结论,不需证明.
(3)如图3,将(1)中的条件改为:在△ABC中,AC=BC,D,C,E三点在同一条直线上,并且有∠BEC=∠ADC=∠BCA=α,其中α为任意钝角,那么(2)中你的猜想是否还成立?若成立,请证明;若不成立,请说明理由.
【分析】(1)先利用同角的余角相等判断出∠EBC=∠DCA,进而判断出△CEB≌△ADC,得出BE=DC,CE=AD=8cm,即可得出结论;
(2)同(1)的方法得出BE=DC,CE=AD,进而得出结论.
(3)同(1)的方法,即可得出结论.
【解答】解:(1)∵BE⊥CE,AD⊥CE,
∴∠E=∠ADC=90°,
∴∠EBC+∠BCE=90°.
∵∠BCE+∠ACD=90°,
∴∠EBC=∠DCA.
在△CEB和△ADC中,
,
∴△CEB≌△ADC(AAS),
∴BE=DC,CE=AD=8cm.
∵DC=CE﹣DE,DE=5cm,
∴DC=8﹣5=3(cm),
∴BE=3cm;
(2)AD+BE=DE,
证明:∵BE⊥CE,AD⊥CE,
∴∠E=∠ADC=90°,
∴∠EBC+∠BCE=90°,
∵∠BCE+∠ACD=90°,
∴∠EBC=∠DCA.
在△CEB和△ADC中,
,
∴△CEB≌△ADC(AAS),
∴BE=DC,CE=AD,
∴DE=CE+DE=AD+BE;
(3)、(2)中的猜想还成立,
证明:∵∠BCE+∠ACB+∠ACD=180°,∠DAC+∠ACB+∠ACD=180°,∠ADC=∠BCA,
∴∠BCE=∠CAD,
在△CEB和△ADC中,
,
∴△CEB≌△ADC(AAS),
∴BE=CD,EC=AD,
∴DE=EC+CD=AD+BE.
一、选择题(共10小题30分)
1.2020年全国上下抗击疫情,众志成城,下列防疫标志图形中是轴对称图形的是( )
A. B.
C. D.
2.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为( )
A.16 B.14 C.12 D.10
3.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若BD=1,CF=3,则AB的长是( )
A.6 B. C.3 D.4
4.一个n边形的每一个外角都是72°,则n等于( )
A.3 B.4 C.5 D.6
5.如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B的对应点B'的坐标为( )
A.(1,7) B.(0,5) C.(3,4) D.(﹣3,2)
6.如图,在△ABC中,∠ACB=90°,点D在AB上,将△BDC沿CD折叠,点B落在AC边上的点B′处,若∠ADB′=20°,则∠A的度数为( )
A.20° B.25° C.35° D.40°
7.等腰三角形其中两条边的长度为5和11,则该等腰三角形的周长为( )
A.21 B.27 C.21或32 D.21或27
8.如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点F,若BF=AC,∠CAD=25°,则∠ABE的度数为( )
A.30° B.15° C.25° D.20°
9.如图,在△ABC中,DE垂直平分BC,分别交BC、AB于D、E,连接CE,BF平分∠ABC,交CE于F,若BE=AC,∠ACE=12°,则∠EFB的度数为( )
A.58° B.63° C.67° D.70°
10.如图所示,在平面直角坐标系中,点A(3,1),点P在x轴上,若以P、O、A为顶点的三角形是等腰三角形,则满足条件的点P共有( )
A.2 个 B.3 个 C.4 个 D.5 个
二、填空题(共5小题15分)
11.在平面直角坐标系中,点A(2,﹣3)与点B(a,b)关于y轴对称,则a﹣b= .
12.如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3,△ABD的周长为13,则△ABC的周长为 .
13.如图,有一张四边形纸片ABCD,AD∥BC,将它沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠GHB=80°,则∠AGE等于 .
14.如图,在四边形ABCD中,AB∥DC,E为BC的中点,连接DE、AE,AE⊥DE,延长DE交AB的延长线于点F.若AB=5,CD=3,则AD的长为 .
15.如图,在△ABC中,AB=AC=24厘米,BC=16厘米,点D为AB的中点,点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为 厘米/秒时,能够在某一时刻使△BPD与△CQP全等.
三.解答题(共8小题75分)
16.(8分)如图,已知在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,求∠AEB的度数.
17.(9分)如图,在平面直角坐标系中,每个小正方形的边长均为1,点A的坐标为(﹣2,3),点B的坐标为(﹣3,1),点C的坐标为(1,﹣2).
(1)作出△ABC关于y轴对称的△A'B'C'(其中A',B',C'分别是A,B,C的对应点,不写画法).
(2)直接写出A',B',C'三点的坐标.
(3)在x轴上求作一点P,使PA+PB的值最小.(简要写出作图步骤)
18.(9分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.
(1)求证:△AEC≌△BED;
(2)若∠1=46°,求∠BDE的度数.
19.(9分)如图,在△ABC中,∠C=90°,AB的垂直平分线交AC于点D,垂足为E,若∠A=30°,CD=2.
(1)求∠BDC的度数;
(2)求BD的长.
20.(9分)某大学计划为新生配备如图1所示的折叠凳图2是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD的长相等,O是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30cm,由以上信息能求出CB的长度吗?如果能,请求出BC的长度,如果不能,请你说明理由.
21.(10分)已知,如图,△ABC和△BDE都是等边三角形,且点D在AC上.
(1)求证:△DBC≌△EBA;
(2)直接写出AE,AD和AB之间的关系.
22.(10分)已知:如图,∠XOY=90°,点A、B分别在射线OX、OY上移动(不与点O重合),BE是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C.
(1)当∠OAB=40°时,∠ACB= 度;
(2)随点A、B的移动,试问∠ACB的大小是否变化?如果保持不变,请给出证明;如果发生变化,请求出变化范围.
23.(11分)如图1,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,AD=8cm,DE=5cm.
(1)求BE的长;
(2)其它条件不变的前提下,将CE所在直线旋转到△ABC的外部(如图2),请你猜想AD,DE,BE三者之间的数量关系,直接写出结论,不需证明.
(3)如图3,将(1)中的条件改为:在△ABC中,AC=BC,D,C,E三点在同一条直线上,并且有∠BEC=∠ADC=∠BCA=α,其中α为任意钝角,那么(2)中你的猜想是否还成立?若成立,请证明;若不成立,请说明理由.
2020-2021学年河南省信阳市罗山县八年级(上)期中数学试卷
参考答案与试题解析
一、选择题(共10小题30分)
1.2020年全国上下抗击疫情,众志成城,下列防疫标志图形中是轴对称图形的是( )
A. B.
C. D.
【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.
【解答】解:A、不是轴对称图形,故此选项不合题意;
B、不是轴对称图形,故此选项不合题意;
C、不是轴对称图形,故此选项不合题意;
D、是轴对称图形,故此选项符合题意;
故选:D.
2.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为( )
A.16 B.14 C.12 D.10
【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.
【解答】解:第三边的取值范围是大于4且小于8,又第三边是偶数,故第三边是6.
则该三角形的周长是14.
故选:B.
3.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若BD=1,CF=3,则AB的长是( )
A.6 B. C.3 D.4
【分析】由“AAS”可证△ADE≌△CFE,可得CF=AD=3,即可求解.
【解答】解:∵FC∥AB,
∴∠A=∠ACF,∠F=∠ADF,
又∵DE=EF,
∴△ADE≌△CFE(AAS),
∴CF=AD=3,
∴AB=AD+BD=4,
故选:D.
4.一个n边形的每一个外角都是72°,则n等于( )
A.3 B.4 C.5 D.6
【分析】先判断出此多边形是正多边形,然后根据正多边形的边数等于360°除以每一个外角的度数计算即可得解.
【解答】解:∵多边形的每一个外角都是72°,
∴此多边形是正多边形,
360°÷72°=5,
所以,它的边数是5.
故选:C.
5.如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B的对应点B'的坐标为( )
A.(1,7) B.(0,5) C.(3,4) D.(﹣3,2)
【分析】根据轴对称的性质和平移规律求得即可.
【解答】解:由坐标系可得B(﹣3,1),将△ABC先沿y轴翻折得到B点对应点为(3,1),再向上平移3个单位长度,点B的对应点B'的坐标为(3,1+3),
即(3,4),
故选:C.
6.如图,在△ABC中,∠ACB=90°,点D在AB上,将△BDC沿CD折叠,点B落在AC边上的点B′处,若∠ADB′=20°,则∠A的度数为( )
A.20° B.25° C.35° D.40°
【分析】利用翻折不变性,三角形内角和定理和三角形外角的性质即可解决问题.
【解答】解:∵∠ACB=90°,
∴∠A+∠B=90°,
∵△CDB′是由△CDB翻折得到,
∴∠CB′D=∠B,
∵∠CB′D=∠A+∠ADB′=∠A+20°,
∴∠A+∠A+20°=90°,
解得∠A=35°.
故选:C.
7.等腰三角形其中两条边的长度为5和11,则该等腰三角形的周长为( )
A.21 B.27 C.21或32 D.21或27
【分析】分两种情况讨论,利用等腰三角形的性质可求解.
【解答】解:若5为腰长,则三边为5,5,11,
∵5+5<11,
∴5,5,11不能构成三角形,
若11为腰长,则三边为5,11,11,
∵5+11>11,
∴等腰三角形的周长为5+11+11=27,
故选:B.
8.如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点F,若BF=AC,∠CAD=25°,则∠ABE的度数为( )
A.30° B.15° C.25° D.20°
【分析】利用全等三角形的性质即可解决问题;
【解答】解:∵AD⊥BC,
∴∠BDF=∠ADC,
又∵∠BFD=∠AFE,
∴∠CAD=∠FBD,
在△BDF和△ADC中
,
∴△BDF≌△ADC (AAS)
∴∠DBF=∠CAD=25°,
∵DB=DA,∠ADB=90°,
∴∠ABD=45°,
∴∠ABE=∠ABD﹣∠DBF=20°
故选:D.
9.如图,在△ABC中,DE垂直平分BC,分别交BC、AB于D、E,连接CE,BF平分∠ABC,交CE于F,若BE=AC,∠ACE=12°,则∠EFB的度数为( )
A.58° B.63° C.67° D.70°
【分析】根据线段垂直平分线上的性质得到EB=EC,根据等腰三角形的性质得到∠EBC=∠ECB,根据三角形内角和定理、三角形的外角性质计算,得到答案.
【解答】解:∵DE垂直平分BC,
∴EB=EC,
∴∠EBC=∠ECB,
∵EB=EC,BE=AC,
∴AC=EC,
∴∠AEC=∠EAC=×(180°﹣12°)=84°,
∴∠EBC=∠ECB=∠AEC=42°,
∵BF平分∠ABC,
∴∠EBF=∠CBF=21°,
∴∠EFB=∠AEC﹣∠EBF=63°,
故选:B.
10.如图所示,在平面直角坐标系中,点A(3,1),点P在x轴上,若以P、O、A为顶点的三角形是等腰三角形,则满足条件的点P共有( )
A.2 个 B.3 个 C.4 个 D.5 个
【分析】分别以点O、A为圆心,以OA的长度为半径画弧,与x轴的交点即为所求的点P的位置.
【解答】解:如图,以点O、A为圆心,以OA的长度为半径画弧,OA的垂直平分线与x轴的交点有4个.
故选:C.
二、填空题(共5小题15分)
11.在平面直角坐标系中,点A(2,﹣3)与点B(a,b)关于y轴对称,则a﹣b= 1 .
【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出a、b的值,然后代入计算即可得解.
【解答】解:∵点A(2,﹣3)与点B(a,b)关于y轴对称,
∴a=﹣2,b=﹣3,
∴a﹣b=﹣2+3=1.
故答案为:1.
12.如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3,△ABD的周长为13,则△ABC的周长为 19 .
【分析】利用线段的垂直平分线的性质即可解决问题.
【解答】解:∵DE垂直平分线段AC,
∴DA=DC,AE+EC=6,
∵AB+AD+BD=13,
∴AB+BD+DC=13,
∴△ABC的周长=AB+BD+BC+AC=13+6=19,
故答案为:19.
13.如图,有一张四边形纸片ABCD,AD∥BC,将它沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠GHB=80°,则∠AGE等于 20° .
【分析】根据平行线的性质可得∠DGH=∠GHB=80°,再根据折叠的性质可得∠EGH=∠DGH=80°,然后根据平角的定义求解即可.
【解答】解:∵AD∥BC,
∴∠DGH=∠GHB=80°,
由折叠的性质可得∠EGH=∠DGH=80°,
∴∠AGE=180°﹣∠EGH﹣∠DGH=180°﹣80°﹣80°=20°.
故答案为:20°.
14.如图,在四边形ABCD中,AB∥DC,E为BC的中点,连接DE、AE,AE⊥DE,延长DE交AB的延长线于点F.若AB=5,CD=3,则AD的长为 8 .
【分析】由“AAS”可证△BEF≌△CED,可得EF=DE,BF=CD=3,由线段垂直平分线的性质可得AD=AF=8.
【解答】解:∵E为BC的中点,
∴BE=EC,
∵AB∥CD,
∴∠F=∠CDE,且∠BEF=∠CED,BE=EC,
∴△BEF≌△CED(AAS)
∴EF=DE,BF=CD=3,
∴AF=AB+BF=8,
∵AE⊥DE,EF=DE,
∴AF=AD=8.
15.如图,在△ABC中,AB=AC=24厘米,BC=16厘米,点D为AB的中点,点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为 4或6 厘米/秒时,能够在某一时刻使△BPD与△CQP全等.
【分析】首先求出BD的长,要使△BPD与△CQP全等,必须BD=CP或BP=CP,得出方程12=16﹣4x或4x=16﹣4x,求出方程的解即可.
【解答】解:设经过x秒后,使△BPD与△CQP全等,
∵AB=AC=24厘米,点D为AB的中点,
∴BD=12厘米,
∵∠ABC=∠ACB,
∴要使△BPD与△CQP全等,必须BD=CP或BP=CP,
即12=16﹣4x或4x=16﹣4x,
解得:x=1或x=2,
x=1时,BP=CQ=4,4÷1=4;
x=2时,BD=CQ=12,12÷2=6;
即点Q的运动速度是4或6,
故答案为:4或6
三.解答题(共8小题75分)
16.(8分)如图,已知在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,求∠AEB的度数.
【分析】根据平行线的性质和三角形外角的性质即可得到结论.
【解答】解:∵BE∥AD,
∴∠ABE=∠BAD=20°,
∵BE平分∠ABC,
∴∠EBC=∠ABE=20°,
∵∠C=90°,
∴∠AEB=∠C+∠CBE=90°+20°=110°.
17.(9分)如图,在平面直角坐标系中,每个小正方形的边长均为1,点A的坐标为(﹣2,3),点B的坐标为(﹣3,1),点C的坐标为(1,﹣2).
(1)作出△ABC关于y轴对称的△A'B'C'(其中A',B',C'分别是A,B,C的对应点,不写画法).
(2)直接写出A',B',C'三点的坐标.
(3)在x轴上求作一点P,使PA+PB的值最小.(简要写出作图步骤)
【分析】(1)分别作出三个顶点关于x轴的对称点,再首尾顺次连接即可得;
(2)根据所作图形可得各顶点坐标;
(3)找到点B关于x轴的对称点B'',连接AB''交x轴于点P,连接PB,此时PA+PB的值最小.
【解答】解:(1)如图所示,△A'B'C'即为所求;
(2)A'(2,3),B'(3,1),C'(﹣1,﹣2);
(3)如图所示,P点即为所求.
18.(9分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.
(1)求证:△AEC≌△BED;
(2)若∠1=46°,求∠BDE的度数.
【分析】(1)根据全等三角形的判定即可判断△AEC≌△BED;
(2)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数;
【解答】解:(1)证明:∵AE和BD相交于点O,
∴∠AOD=∠BOE.
在△AOD和△BOE中,∠A=∠B,
∴∠BEO=∠2.
又∵∠1=∠2,
∴∠1=∠BEO,
∴∠AEC=∠BED.
在△AEC和△BED中,
,
∴△AEC≌△BED(ASA).
(2)∵△AEC≌△BED
∴DE=CE
∴∠EDC=∠C
∵∠1=46°
∴∠EDC=∠C=67°
∵△AEC≌△BED
∴∠BDE=∠C=67°
19.(9分)如图,在△ABC中,∠C=90°,AB的垂直平分线交AC于点D,垂足为E,若∠A=30°,CD=2.
(1)求∠BDC的度数;
(2)求BD的长.
【分析】(1)由于AB的垂直平分线交AC于点D,根据线段的垂直平方的性质得到DA=DB,然后根据等腰三角形的性质推出∠DBE=∠A,然后利用已知条件即可求出∠BDC的度数;
(2)利用已知条件和30°的角所对的直角边等于斜边的一半即可求出BD的长.
【解答】解:(1)∵DE垂直平分AB,
∴DA=DB,
∴∠DBE=∠A=30°,
∴∠BDC=60°;
(2)在Rt△BDC中,∵∠BDC=60°,
∴∠DBC=30°,
∴BD=2CD=4.
20.(9分)某大学计划为新生配备如图1所示的折叠凳图2是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD的长相等,O是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30cm,由以上信息能求出CB的长度吗?如果能,请求出BC的长度,如果不能,请你说明理由.
【分析】根据中点定义求出OA=OB,OC=OD,然后利用“边角边”证明△AOD和△BOC全等,根据全等三角形对应边相等即可证明.
【解答】解:∵O是AB、CD的中点,
∴OA=OB,OC=OD,
在△AOD和△BOC中,,
∴△AOD≌△BOC(SAS),
∴CB=AD,
∵AD=30cm,
∴CB=30cm.
21.(10分)已知,如图,△ABC和△BDE都是等边三角形,且点D在AC上.
(1)求证:△DBC≌△EBA;
(2)直接写出AE,AD和AB之间的关系.
【分析】(1)由“SAS”可证△DBC≌△EBA;
(2)由全等三角形的性质可求解.
【解答】(1)证明:∵△ABC和△BDE都是等边三角形,
∴AB=BC,BE=BD,∠ABC=∠DBE=∠C=60°,
∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,
∴∠DBC=∠EBA,
在△DBC和△EBA中,
,
∴△DBC≌△EBA(SAS);
∴∠C=∠EAB=∠ABC,
∴EA∥BC
(2)解:AE+AD=AB,理由如下:
∵△DBC≌△EBA,
∴AE=CD,
∵AD+CD=AC=AB,
∴AE+AD=AB.
22.(10分)已知:如图,∠XOY=90°,点A、B分别在射线OX、OY上移动(不与点O重合),BE是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C.
(1)当∠OAB=40°时,∠ACB= 45 度;
(2)随点A、B的移动,试问∠ACB的大小是否变化?如果保持不变,请给出证明;如果发生变化,请求出变化范围.
【分析】(1)先利用角平分线得出∠CAB=∠OAB,∠EBA=∠YBA,再利用三角形的外角的性质即可得出结论;
(2)先利用角平分线得出∠CAB=∠OAB,∠EBA=∠YBA,再利用三角形的外角的性质即可得出结论.
【解答】解:(1)∵∠XOY=90°,∠OAB=40°,
∴∠ABY=130°,
∵AC平分∠OAB,BE平分∠YBA,
∴∠CAB=∠OAB=20°,∠EBA=∠YBA=65°,
∵∠EBA=∠C+∠CAB,
∴∠C=∠EBA﹣∠CAB=45°,
故答案为:45;
(2)∠ACB的大小不变化.
理由:∵AC平分∠OAB,BE平分∠YBA,
∴∠CAB=∠OAB,∠EBA=∠YBA,
∵∠EBA=∠C+∠CAB,
∴∠C=∠EBA﹣∠CAB=∠YBA﹣∠OAB=(∠YBA﹣∠OAB),
∵∠YBA﹣∠OAB=90°,
∴∠C=×90°=45°,
即:∠ACB的大小不发生变化.
23.(11分)如图1,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,AD=8cm,DE=5cm.
(1)求BE的长;
(2)其它条件不变的前提下,将CE所在直线旋转到△ABC的外部(如图2),请你猜想AD,DE,BE三者之间的数量关系,直接写出结论,不需证明.
(3)如图3,将(1)中的条件改为:在△ABC中,AC=BC,D,C,E三点在同一条直线上,并且有∠BEC=∠ADC=∠BCA=α,其中α为任意钝角,那么(2)中你的猜想是否还成立?若成立,请证明;若不成立,请说明理由.
【分析】(1)先利用同角的余角相等判断出∠EBC=∠DCA,进而判断出△CEB≌△ADC,得出BE=DC,CE=AD=8cm,即可得出结论;
(2)同(1)的方法得出BE=DC,CE=AD,进而得出结论.
(3)同(1)的方法,即可得出结论.
【解答】解:(1)∵BE⊥CE,AD⊥CE,
∴∠E=∠ADC=90°,
∴∠EBC+∠BCE=90°.
∵∠BCE+∠ACD=90°,
∴∠EBC=∠DCA.
在△CEB和△ADC中,
,
∴△CEB≌△ADC(AAS),
∴BE=DC,CE=AD=8cm.
∵DC=CE﹣DE,DE=5cm,
∴DC=8﹣5=3(cm),
∴BE=3cm;
(2)AD+BE=DE,
证明:∵BE⊥CE,AD⊥CE,
∴∠E=∠ADC=90°,
∴∠EBC+∠BCE=90°,
∵∠BCE+∠ACD=90°,
∴∠EBC=∠DCA.
在△CEB和△ADC中,
,
∴△CEB≌△ADC(AAS),
∴BE=DC,CE=AD,
∴DE=CE+DE=AD+BE;
(3)、(2)中的猜想还成立,
证明:∵∠BCE+∠ACB+∠ACD=180°,∠DAC+∠ACB+∠ACD=180°,∠ADC=∠BCA,
∴∠BCE=∠CAD,
在△CEB和△ADC中,
,
∴△CEB≌△ADC(AAS),
∴BE=CD,EC=AD,
∴DE=EC+CD=AD+BE.
相关资料
更多