2020年高考数学一轮复习教案:第6章 第5节 直接证明与间接证明(含解析)
展开第五节 直接证明与间接证明
[考纲传真] 1.了解直接证明的两种基本方法:综合法和分析法;了解综合法和分析法的思考过程和特点.2.了解反证法的思考过程和特点.
1.直接证明
内容 | 综合法 | 分析法 |
定义 | 利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立 | 从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件 |
思维过程 | 由因导果 | 执果索因 |
框图表示 | → →…→ | →→…
|
书写格式 | 因为…,所以…或由…,得… | 要证…,只需证…,即证… |
2.间接证明
反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.
[基础自测]
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)综合法的思维过程是由因导果,逐步寻找已知的必要条件. ( )
(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( )
(3)用反证法证明时,推出的矛盾不能与假设矛盾. ( )
(4)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程. ( )
[答案] (1)√ (2)× (3)× (4)√
2.要证a2+b2-1-a2b2≤0 ,只要证明( )
A.2ab-1-a2b2≤0
B.a2+b2-1-≤0
C.-1-a2b2≤0
D.(a2-1)(b2-1)≥0
D [a2+b2-1-a2b2≤0⇔(a2-1)(b2-1)≥0.]
3.用反证法证明命题:“已知a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是( )
A.方程x2+ax+b=0没有实根
B.方程x2+ax+b=0至多有一个实根
C.方程x2+ax+b=0至多有两个实根
D.方程x2+ax+b=0恰好有两个实根
A [“方程x2+ax+b=0至少有一个实根”的反面是“方程x2+ax+b=0没有实根”,故选A.]
4.已知a,b,x均为正数,且a>b,则与的大小关系是________.
> [∵-=>0,∴>.]
5.(教材改编)在△ABC中,三个内角A,B,C的对边分别为a,b,c,且A,B,C成等差数列,a,b,c成等比数列,则△ABC的形状为__________三角形.
等边 [由题意2B=A+C,
又A+B+C=π,∴B=,又b2=ac,
由余弦定理得b2=a2+c2-2accos B=a2+c2-ac,
∴a2+c2-2ac=0,即(a-c)2=0,∴a=c,
∴A=C,∴A=B=C=,
∴△ABC为等边三角形.]
综合法 |
1.已知m>1,a=-,b=-,则以下结论正确的是( )
A.a>b B.a<b
C.a=b D.a,b大小不定
B [∵a=-=,
b=-=.
而+>+>0(m>1),
∴<,
即a<b.]
2.已知函数f(x)=-(a>0,且a≠1).
(1)证明:函数y=f(x)的图象关于点对称;
(2)求f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)的值.
[证明] (1)函数f(x)的定义域为全体实数,任取一点(x,y),它关于点对称的点的坐标为(1-x,-1-y).
由已知y=-,
则-1-y=-1+=-,
f(1-x)=-=-
=-=-,
∴-1-y=f(1-x),
即函数y=f(x)的图象关于点对称.
(2)由(1)知-1-f(x)=f(1-x),
即f(x)+f(1-x)=-1.
∴f(-2)+f(3)=-1,f(-1)+f(2)=-1,
f(0)+f(1)=-1.
则f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)=-3.
[规律方法] 综合法证题的思路
分析法 |
1.若a,b∈(1,+∞),证明<.
[证明] 要证<,
只需证()2<()2,
只需证a+b-1-ab<0,
即证(a-1)(1-b)<0.
因为a>1,b>1,所以a-1>0,1-b<0,
即(a-1)(1-b)<0成立,
所以原不等式成立.
2.已知△ABC的三个内角A,B,C成等差数列,A,B,C的对边分别为a,b,c.
求证:+=.
[证明] 要证+=,即证+=3,也就是+=1,
只需证c(b+c)+a(a+b)=(a+b)(b+c),
需证c2+a2=ac+b2,
又△ABC三内角A,B,C成等差数列,故B=60°,
由余弦定理,得,b2=c2+a2-2accos 60°,
即b2=c2+a2-ac,故c2+a2=ac+b2成立.
于是原等式成立.
[规律方法] 分析法的证题思路
1分析法的证题思路:先从结论入手,由此逐步推出保证此结论成立的充分条件,而当这些判断恰恰都是已证的命题定义、公理、定理、法则、公式等或要证命题的已知条件时命题得证.
2证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价或充分的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.
反证法 |
►考法1 证明否定性命题
【例1】 设{an}是公比为q的等比数列.
(1)推导{an}的前n项和公式;
(2)设q≠1,证明数列{an+1}不是等比数列.
[解] (1)设{an}的前n项和为Sn.
则Sn=a1+a1q+a1q2+…+a1qn-1,
qSn=a1q+a1q2+…+a1qn-1+a1qn,
两式相减得(1-q)Sn=a1-a1qn=a1(1-qn),
当q≠1时,Sn=,
当q=1时,Sn=a1+a1+…+a1=na1,
所以Sn=
(2)证明:假设数列{an+1}是等比数列,
则(a1+1)(a3+1)=(a2+1)2,
即a1a3+a1+a3+1=a+2a2+1,
因为{an}是等比数列,公比为q,
所以a1a3=a,a2=a1q,a3=a1q2,
所以a1(1+q2)=2a1q.
即q2-2q+1=0,(q-1)2=0,q=1,
这与已知q≠1矛盾,
所以假设不成立,故数列{an+1}不是等比数列.
►考法2 证明“至多”“至少”命题
【例2】 已知a,b,c是互不相等的非零实数,用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0中至少有一个方程有两个相异实根.
[证明] 假设三个方程都没有两个相异实根.
则Δ1=4b2-4ac≤0,
Δ2=4c2-4ab≤0,
Δ3=4a2-4bc≤0,
上述三个式子相加得:
a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,
即(a-b)2+(b-c)2+(c-a)2≤0.
所以a=b=c这与a,b,c是互不相等的实数相矛盾.
因此假设不成立,故三个方程ax2+2bx+c=0,
bx2+2cx+a=0,cx2+2ax+b=0中至少有一个方程有两个相异实根.
[规律方法] 用反证法证明数学命题需把握的三点
1必须先否定结论,即肯定结论的反面;
2必须从否定结论进行推理,即应把结论的反面作为条件,且必须依据这一条件进行推证;
3推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与已知事实矛盾等,但是推导出的矛盾必须是明显的.
(1)已知x∈R,a=x2+,b=2-x,c=x2-x+1,试证明a,b,c至少有一个不小于1.
(2)设a>0,b>0,且a+b=+.证明:
(1)a+b≥2;
(2)a2+a<2与b2+b<2不可能同时成立.
[证明] 由a+b=+=,a>0,b>0,得ab=1.
(1)由基本不等式及ab=1,有a+b≥2=2,当且仅当a=b=1时,等号成立,即a+b≥2.
(2)假设a2+a<2与b2+b<2同时成立,
则由a2+a<2及a>0,得0<a<1;
同理,0<b<1,从而ab<1,这与ab=1矛盾.
故a2+a<2与b2+b<2不可能同时成立.