|学案下载
搜索
    上传资料 赚现金
    2021版新高考数学(文科)一轮复习教师用书:第9章第6节 双曲线
    立即下载
    加入资料篮
    2021版新高考数学(文科)一轮复习教师用书:第9章第6节 双曲线01
    2021版新高考数学(文科)一轮复习教师用书:第9章第6节 双曲线02
    2021版新高考数学(文科)一轮复习教师用书:第9章第6节 双曲线03
    还剩12页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021版新高考数学(文科)一轮复习教师用书:第9章第6节 双曲线

    展开
    第六节 双曲线
    [最新考纲] 1.了解双曲线的实际背景,了解双曲线在刻画现实世界和解决实际问题中的作用.2.了解双曲线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线).3.理解数形结合思想.4.了解双曲线的简单应用.


    1.双曲线定义
    平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.
    集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.
    (1)当2a<|F1F2|时,P点的轨迹是双曲线;
    (2)当2a=|F1F2|时,P点的轨迹是两条射线;
    (3)当2a>|F1F2|时,P点不存在.
    2.双曲线的标准方程和几何性质
    标准方程
    -=1
    (a>0,b>0)
    -=1
    (a>0,b>0)
    图形



    范围
    x≥a或x≤-a,y∈R
    x∈R,y≤-a或y≥a
    对称性
    对称轴:坐标轴;对称中心:原点
    顶点坐标
    A1(-a,0),A2(a,0)
    A1(0,-a),A2(0,a)
    渐近线
    y=±x
    y=±x
    性质
    离心率
    e==∈(1,+∞)
    实、虚轴
    线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;
    线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;
    a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长
    a,b,c的关系
    c2=a2+b2(c>a>0,c>b>0)
    3.等轴双曲线
    实轴和虚轴等长的双曲线叫做等轴双曲线,其渐近线方程为y=±x,离心率为e=.

    1.过双曲线的一个焦点且与实轴垂直的弦的长为,也叫通径.
    2.双曲线的焦点到其渐近线的距离为b.
    3.若P是双曲线右支上一点,F1,F2分别为双曲线的左、右焦点,则|PF1|min=a+c,|PF2|min=c-a.
    4.与双曲线-=1(a>0,b>0)有共同渐近线的方程可表示为-=t(t≠0).
    5.当已知双曲线的渐近线方程为bx±ay=0,求双曲线方程时,可设双曲线方程为b2x2-a2y2=λ(λ≠0).

    一、思考辨析(正确的打“√”,错误的打“×”)
    (1)平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线. (  )
    (2)方程-=1(mn>0)表示焦点在x轴上的双曲线. (  )
    (3)双曲线-=λ(m>0,n>0,λ≠0)的渐近线方程是-=0,即±=0. (  )
    (4)等轴双曲线的渐近线互相垂直,离心率等于. (  )
    [答案] (1)× (2)× (3)√ (4)√
    二、教材改编
    1.双曲线-=1的焦距为(  )
    A.5    B.    C.2    D.1
    C [由双曲线-=1,易知c2=3+2=5,所以c=,所以双曲线-=1的焦距为2.]
    2.以椭圆+=1的焦点为顶点,顶点为焦点的双曲线方程为(  )
    A.x2-=1 B.-y2=1
    C.x2-=1 D.-=1
    A [设要求的双曲线方程为-=1(a>0,b>0),
    由椭圆+=1,得椭圆焦点为(±1,0),在x轴上的顶点为(±2,0).
    所以双曲线的顶点为(±1,0),焦点为(±2,0).
    所以a=1,c=2,所以b2=c2-a2=3,
    所以双曲线的标准方程为x2-=1.]
    3.已知双曲线-=1(a>0)的离心率为2,则a=(  )
    A.2 B. C. D.1
    D [依题意,e===2,∴=2a,则a2=1,a=1.]
    4.经过点A(5,-3),且对称轴都在坐标轴上的等轴双曲线方程为 .
    -=1 [设双曲线的方程为x2-y2=λ,把点A(5,-3)代入,得λ=16,
    故所求方程为-=1.]

    考点1 双曲线的定义及应用
     双曲线定义的两个应用
    (1)判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出双曲线方程.
    (2)在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF1|-|PF2||=2a,运用平方的方法,建立与|PF1|·|PF2|的关系.
     (1)设P是双曲线-=1上一点,F1,F2分别是双曲线的左、右焦点,若|PF1|=9,则|PF2|等于(  )
    A.1          B.17
    C.1或17 D.以上均不对
    (2)已知动圆M与圆C1:(x+4)2+y2=2外切,与圆C2:(x-4)2+y2=2内切,则动圆圆心M的轨迹方程为(  )
    A.-=1(x≥) B.-=1(x≤-)
    C.+=1(x≥) D.+=1(x≤-)
    (3)已知F1,F2为双曲线C:x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|·|PF2|等于(  )
    A.2    B.4 C.6    D.8
    (1)B (2)A (3)B [(1)根据双曲线的定义得||PF1|-|PF2||=8⇒|PF2|=1或17.
    又|PF2|≥c-a=2,故|PF2|=17,故选B.
    (2)设动圆的半径为r,由题意可得|MC1|=r+,|MC2|=r-,所以|MC1|-|MC2|=2,故由双曲线的定义可知动点M在以C1(-4,0),C2(4,0)为焦点,实轴长为2a=2的双曲线的右支上,即a=,c=4⇒b2=16-2=14,故动圆圆心M的轨迹方程为-=1(x≥),故选A.
    (3)由双曲线的方程得a=1,c=,
    由双曲线的定义得||PF1|-|PF2||=2.
    在△PF1F2中,由余弦定理得
    |F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|cos 60°,
    即(2)2=|PF1|2+|PF2|2-|PF1|·|PF2|=(|PF1|-|PF2|)2+|PF1|·|PF2|=22+|PF1|·|PF2|,
    解得|PF1|·|PF2|=4,故选B.]
    [母题探究]
    1.本例(3)中,若将条件“∠F1PF2=60°”改为|PF1|=2|PF2|,试求cos∠F1PF2的值.
    [解] 根据双曲线的定义知,|PF1|-|PF2|=|PF2|=2,则|PF1|=2|PF2|=4,又|F1F2|=2
    ∴cos∠F1PF2===.
    2.本例(3)中,若将条件“∠F1PF2=60°”,改为·=0,则△F1PF2的面积是多少?
    [解] 不妨设点P在双曲线的右支上.
    则|PF1|-|PF2|=2a=2,
    由·=0,得⊥.
    在△F1PF2中,|PF1|2+|PF2|2=|F1F2|2,
    即(|PF1|-|PF2|)2+2|PF1||PF2|=8,
    ∴|PF1||PF2|=2.
    ∴S△F1PF2=|PF1||PF2|=1.
     (1)求双曲线上的点到焦点的距离时,要注意取舍,如本例T(1);(2)利用定义求双曲线方程时,要注意所求是双曲线一支,还是整个双曲线,如本例T(2).
     1.已知点F1(-3,0)和F2(3,0),动点P到F1,F2的距离之差为4,则点P的轨迹方程为(  )
    A.-=1(y>0)    B.-=1(x>0)
    C.-=1(y>0) D.-=1(x>0)
    B [由题设知点P的轨迹方程是焦点在x轴上的双曲线的右支,设其方程为-=1(x>0,a>0,b>0),由题设知c=3,a=2,b2=9-4=5,所以点P的轨迹方程为-=1(x>0).]
    2.已知双曲线x2-=1的两个焦点为F1,F2,P为双曲线右支上一点.若|PF1|=|PF2|,则△F1PF2的面积为(  )
    A.48   B.24   C.12   D.6
    B [由双曲线的定义可得
    |PF1|-|PF2|=|PF2|=2a=2,
    解得|PF2|=6,故|PF1|=8,
    又|F1F2|=10,
    由勾股定理可知三角形PF1F2为直角三角形,因此S△F1PF2=|PF1|·|PF2|=24.]
    3.若双曲线-=1的左焦点为F,点P是双曲线右支上的动点,A(1,4),则|PF|+|PA|的最小值是(  )
    A.8 B.9 C.10 D.12
    B [由题意知,双曲线-=1的左焦点F的坐标为(-4,0),设双曲线的右焦点为B,则B(4,0),由双曲线的定义知|PF|+|PA|=4+|PB|+|PA|≥4+|AB|=4+=4+5=9,当且仅当A,P,B三点共线且P在A,B之间时取等号.]
    考点2 双曲线的标准方程
     求双曲线方程的思路
    (1)如果已知双曲线的中心在原点,且确定了焦点在x轴上或y轴上,则设出相应形式的标准方程,然后根据条件确定关于a,b,c的方程组,解出a2,b2,从而写出双曲线的标准方程(求得的方程可能是一个,也有可能是两个,注意合理取舍,但不要漏解).
    (2)当焦点位置不确定时,有两种方法来解决:一种是分类讨论,注意考虑要全面;另一种是设双曲线的一般方程为mx2+ny2=1(mn<0)求解.
     (1)(2019·荆门模拟)方程+=1表示双曲线的一个充分不必要条件是(  )
    A.-3<m<0 B.-1<m<3
    C.-3<m<4 D.-2<m<3
    (2)[一题多解]已知双曲线过点(2,3),渐近线方程为y=±x,则该双曲线的标准方程是(  )
    A.-=1 B.-=1
    C.x2-=1 D.-=1
    (3)(2018·天津高考)已知双曲线-=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为(  )
    A.-=1 B.-=1
    C.-=1 D.-=1
    (1)B (2)C (3)C [(1)方程+=1表示双曲线,则(m+2)(m-3)<0,解得-2<m<3.∵要求充分不必要条件,∴选项范围是-2<m<3的真子集,只有选项B符合题意.故选B.
    (2)法一:当其中的一条渐近线方程y=x中的x=2时,y=2>3,又点(2,3)在第一象限,所以双曲线的焦点在x轴上,设双曲线的标准方程是-=1(a>0,b>0),由题意得解得所以该双曲线的标准方程为x2-=1,故选C.
    法二:因为双曲线的渐近线方程为y=±x,即=±x,所以可设双曲线的方程是x2-=λ(λ≠0),将点(2,3)代入,得λ=1,所以该双曲线的标准方程为x2-=1,故选C.
    (3)如图,不妨设A在B的上方,则A,B.
    其中的一条渐近线为bx-ay=0,则d1+d2===2b=6,∴b=3. 又由e==2,知a2+b2=4a2,∴a=.
    ∴双曲线的方程为-=1. 故选C.]

     已知双曲线的渐近线方程,用渐近线方程设出双曲线方程,运算过程较为简单.
    [教师备选例题]
    设双曲线与椭圆+=1有共同的焦点,且与椭圆相交,其中一个交点的坐标为(,4),则此双曲线的标准方程是 .
    -=1  [法一:椭圆+=1的焦点坐标是(0,±3),设双曲线方程为-=1(a>0,b>0),根据双曲线的定义知2a=|-|
    =4,故a=2.
    又b2=32-22=5,故所求双曲线的标准方程为-=1.
    法二:椭圆+=1的焦点坐标是(0,±3).设双曲线方程为-=1(a>0,b>0),则a2+b2=9,①
    又点(,4)在双曲线上,所以-=1,②
    联立①②解得a2=4,b2=5.故所求双曲线的标准方程为-=1.
     1.(2019·湘潭模拟)以双曲线-=1的焦点为顶点,且渐近线互相垂直的双曲线的标准方程为(  )
    A.x2-y2=1 B.-y2=1
    C.-=1 D.-=1
    D [由题可知,所求双曲线的顶点坐标为(±3,0).又因为双曲线的渐近线互相垂直,所以a=b=3,则该双曲线的方程为-=1.故选D.]
    2.已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,若|PF1|-|PF2|=4b,且双曲线的焦距为2,则该双曲线的标准方程为(  )
    A.-y2=1 B.-=1
    C.x2-=1 D.-=1
    A [由题意可得
    解得则该双曲线的标准方程为-y2=1.]
    3.经过点P(3,2),Q(-6,7)的双曲线的标准方程为 .
    -=1 [设双曲线方程为mx2+ny2=1(mn<0),
    因为所求双曲线经过点P(3,2),Q(-6,7),
    所以解得
    故所求双曲线方程为-=1.]
    考点3 双曲线的几何性质
     求双曲线的离心率(或其范围)
     求双曲线的离心率或其范围的方法
    (1)求a,b,c的值,由==1+直接求e.
    (2)列出含有a,b,c的齐次方程(或不等式),借助于b2=c2-a2消去b,然后转化成关于e的方程(或不等式)求解.
     (1)(2019·全国卷Ⅱ)设F为双曲线C:-=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为(  )
    A. B. C.2 D.
    (2)已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,且|PF1|=4|PF2|,则双曲线离心率的取值范围是(  )
    A. B.
    C.(1,2] D.
    (1)A (2)B [(1)令双曲线C:-=1(a>0,b>0)的右焦点F的坐标为(c,0),则c=.

    如图所示,由圆的对称性及条件|PQ|=|OF|可知,PQ是以OF为直径的圆的直径,且PQ⊥OF.设垂足为M,连接OP,则|OP|=a,|OM|=|MP|=,由|OM|2+|MP|2=|OP|2,
    得+=a2,∴=,即离心率e=.
    故选A.
    (2)由双曲线的定义可知|PF1|-|PF2|=2a,又|PF1|=4|PF2|,所以|PF2|=,由双曲线上的点到焦点的最短距离为c-a,可得≥c-a,解得≤,即e≤,又双曲线的离心率e>1,故该双曲线离心率的取值范围为,故选B.]
     本例T(2)利用双曲线右支上的点到右焦点的距离不小于c-a建立不等式求解,同时应注意双曲线的离心率e>1.
    [教师备选例题]
    (2019·沈阳模拟)设F1,F2分别为双曲线C:-=1(a>0,b>0)的左、右焦点,P是双曲线C上一点,若|PF1|+|PF2|=4a,且△PF1F2的最小内角的正弦值为,则双曲线C的离心率为(  )
    A.2    B.3    C.    D.
    C [不妨设P是双曲线右支上的一点,由双曲线的定义可知|PF1|-|PF2|=2a,|F1F2|=2c,所以|PF1|=3a,|PF2|=a.△PF1F2的最小内角的正弦值为,其余弦值为,因为|PF1|>|PF2|,|F1F2|>|PF2|,所以∠PF1F2为△PF1F2的最小内角.由余弦定理可得|PF2|2=|F1F2|2+|PF1|2-2|F1F2||PF1|cos∠PF1F2,即a2=4c2+9a2-2×2c×3a×,所以离心率e==.故选C.]
     与渐近线有关的问题
     与渐近线有关的结论
    (1)双曲线-=1(a>0,b>0)的渐近线方程为y=±x,双曲线-=1(a>0,b>0)的渐近线方程为y=±x.
    (2)e2=1+⇒=e2-1⇒=.
     (1)(2019·武汉模拟)已知双曲线C:-=1(m>0,n>0)的离心率与椭圆+=1的离心率互为倒数,则双曲线C的渐近线方程为(  )
    A.4x±3y=0
    B.3x±4y=0
    C.4x±3y=0或3x±4y=0
    D.4x±5y=0或5x±4y=0
    (2)(2019·张掖模拟)已知双曲线C:-=1(a>0,b>0)的顶点到其一条渐近线的距离为1,焦点到其一条渐近线的距离为,则其一条渐近线的倾斜角为(  )
    A.30° B.45° C.60° D.120°
    (1)A (2)B [(1)由题意知,椭圆中a=5,b=4,∴椭圆的离心率e==,∴双曲线的离心率为=,∴=,∴双曲线的渐近线方程为y=±x=±x,即4x±3y=0.故选A.
    (2)设双曲线-=1的右顶点A(a,0),右焦点F2(c,0)到渐近线y=x的距离分别为1和,则有即=.
    则==-1=2-1=1,即=1.
    设渐近线y=x的倾斜角为θ,则tan θ==1.
    所以θ=45°,故选B.]
     双曲线中,焦点到一条渐近线的距离等于b是常用的结论.
    [教师备选例题]
    (2019·衡水模拟)已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,过点F1作圆x2+y2=a2的切线,交双曲线右支于点M.若∠F1MF2=45°,则双曲线的渐近线方程为(  )
    A.y=±x B.y=±x
    C.y=±x D.y=±2x
    A [如图,作OA⊥F1M于点A,F2B⊥F1M于点B.因为F1M与圆x2+y2=a2相切,∠F1MF2=45°,所以|OA|=a,|F2B|=|BM|=2a,|F2M|=2a,|F1B|=2b.又点M在双曲线上,所以|F1M|-|F2M|=2a+2b-2a=2a,整理得b=a.所以=.所以双曲线的渐近线方程为y=±x.故选A.]

     1.已知双曲线-=1(m>0)的一个焦点在直线x+y=5上,则双曲线的渐近线方程为(  )
    A.y=±x B.y=±x
    C.y=±x D.y=±x
    B [由双曲线-=1(m>0)的焦点在y轴上,且在直线x+y=5上,直线x+y=5与y轴的交点为(0,5),
    有c=5,则m+9=25,得m=16,
    所以双曲线的方程为-=1,
    故双曲线的渐近线方程为y=±x.故选B.]
    2.已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,点A(2,)在双曲线C上,若AF2⊥F1F2,则双曲线C的渐近线方程为(  )
    A.y=±x B.y=±x
    C.y=±2x D.y=±x
    A [因为AF2⊥F1F2,A(2,),所以F1(-2,0),F2(2,0),由双曲线的定义可知2a=|AF1|-|AF2|=-=2,即a=,所以b==,故双曲线C的渐近线方程为y=±x,故选A.]


    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021版新高考数学(文科)一轮复习教师用书:第9章第6节 双曲线
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map