还剩11页未读,
继续阅读
所属成套资源:2020高考人教版A版理科数学数学一轮复习讲义
成套系列资料,整套一键下载
2020版高考数学(理)新创新一轮复习通用版讲义:第十章第五节古典概型与几何概型
展开
第五节古典概型与几何概型
1.古典概型
(1)古典概型的特征:
①有限性:在一次试验中,可能出现的结果是有限的,即只有有限个不同的基本事件;,②等可能性:每个基本事件出现的可能性是相等的.
一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性.
(2)古典概型的概率计算的基本步骤:
①判断本次试验的结果是否是等可能的,设出所求的事件为A;
②分别计算基本事件的总数n和所求的事件A所包含的基本事件个数m;
③利用古典概型的概率公式P(A)=,求出事件A的概率.
(3)频率的计算公式与古典概型的概率计算公式的异同
名称
不同点
相同点
频率计
算公式
频率计算中的m,n均随随机试验的变化而变化,但随着试验次数的增多,它们的比值逐渐趋近于概率值
都计算了一个比值
古典概型的
概率计算公式
是一个定值,对同一个随机事件而言,m,n都不会变化
2.几何概型
(1)概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
(2)几何概型的基本特点:
①试验中所有可能出现的结果(基本事件)有无限多个;
②每个基本事件出现的可能性相等.
(3)计算公式:
P(A)=.
几何概型应用中的关注点
(1)关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率.
(2)确定基本事件时一定要选准度量,注意基本事件的等可能性.
[小题查验基础]
一、判断题(对的打“√”,错的打“×”)
(1)与面积有关的几何概型的概率与几何图形的形状有关.( )
(2)几何概型与古典概型中的基本事件发生的可能性都是相等的,其基本事件个数都有限.( )
(3)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个事件是等可能事件.( )
(4)在古典概型中,如果事件A中基本事件构成集合A,所有的基本事件构成集合I,则事件A的概率为.( )
答案:(1)× (2)× (3)× (4)√
二、选填题
1.一枚硬币连掷2次,只有一次出现正面的概率为( )
A. B.
C. D.
解析:选D 一枚硬币连掷2次可能出现(正,正)、(反,反)、(正,反)、(反,正)四种情况,只有一次出现正面的情况有两种,故P==.
2.某路公共汽车每5分钟发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过2分钟的概率是( )
A. B.
C. D.
解析:选C 试验的全部结果构成的区域长度为5,所求事件的区域长度为2,故所求概率为P=.
3.已知四边形ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为( )
A. B.1-
C. D.1-
解析:选B 如图,依题意可知所求概率为图中阴影部分与长方形的面积比,即所求概率P===1-.
4.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.
解析:两数之和等于5有两种情况(1,4)和(2,3),总的基本事件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10种,故所求概率P==.
答案:
5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为________.
解析:P=1-=1-=.
答案:
[典例精析]
(1)(2018·全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )
A. B.
C. D.
(2)(2019·武汉调研)将一枚质地均匀的骰子投掷两次,得到的点数依次记为a和b,则方程ax2+bx+1=0有实数解的概率是( )
A. B.
C. D.
[解析] (1)不超过30的所有素数为2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有C=45种情况,而和为30的有7+23,11+19,13+17这3种情况,所以所求概率P==.
(2)投掷骰子两次,所得的点数a和b满足的关系为所以a和b的组合有36种.
若方程ax2+bx+1=0有实数解,
则Δ=b2-4a≥0,所以b2≥4a.
当b=1时,没有a符合条件;当b=2时,a可取1;当b=3时,a可取1,2;当b=4时,a可取1,2,3,4;当b=5时,a可取1,2,3,4,5,6;当b=6时,a可取1,2,3,4,5,6.
满足条件的组合有19种,则方程ax2+bx+1=0有实数解的概率P=.
[答案] (1)C (2)C
[解题技法]
1.古典概型的概率求解步骤
(1)求出所有基本事件的个数n.
(2)求出事件A包含的所有基本事件的个数m.
(3)代入公式P(A)=求解.
2.基本事件个数的确定方法
(1)列举法:此法适合于基本事件个数较少的古典概型.
(2)列表法:此法适合于从多个元素中选定两个元素的试验,也可看成坐标法.
(3)树状图法:树状图是进行列举的一种常用方法,适用于有顺序的问题及较复杂问题中基本事件数的探求.
(4)运用排列组合知识计算.
[过关训练]
1.(2019·益阳、湘潭调研)已知a∈{-2,0,1,2,3},b∈{3,5},则函数f(x)=(a2-2)ex+b为减函数的概率是( )
A. B.
C. D.
解析:选C 若函数f(x)=(a2-2)ex+b为减函数,则a2-2<0,又a∈{-2,0,1,2,3},故只有a=0,a=1满足题意,又b∈{3,5},所以函数f(x)=(a2-2)ex+b为减函数的概率是=.
2.从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( )
A. B.
C. D.
解析:选C 由题意得,所求概率P==.
3.将A,B,C,D这4名同学从左至右随机地排成一排,则“A与B相邻且A与C之间恰好有1名同学”的概率是( )
A. B.
C. D.
解析:选B A,B,C,D 4名同学排成一排有A=24种排法.当A,C之间是B时,有2×2=4种排法,当A,C之间是D时,有2种排法,所以所求概率P==.
[考法全析]
类型(一) 与长度有关的几何概型
[例1] (2019·濮阳模拟)在[-6,9]内任取一个实数m,设f(x)=-x2+mx+m,则函数f(x)的图象与x轴有公共点的概率等于( )
A. B.
C. D.
[解析] ∵f(x)=-x2+mx+m的图象与x轴有公共点,∴Δ=m2+4m≥0,∴m≤-4或m≥0,∴在[-6,9]内取一个实数m,函数f(x)的图象与x轴有公共点的概率P==,故选D.
[答案] D
类型(二) 与面积有关的几何概型
[例2] (1)(2018·潍坊模拟)如图,六边形ABCDEF是一个正六边形,若在正六边形内任取一点,则该点恰好在图中阴影部分的概率是( )
A. B.
C. D.
(2)(2019·洛阳联考)如图,圆O:x2+y2=π2内的正弦曲线y=sin x与x轴围成的区域记为M(图中阴影部分),随机往圆O内投一个点A,则点A落在区域M内的概率是( )
A. B.
C. D.
[解析] (1)设正六边形的中心为点O,BD与AC交于点G,BC=1,则BG=CG,∠BGC=120°,在△BCG中,由余弦定理得1=BG2+BG2-2BG2cos 120°,得BG=,所以S△BCG=×BG×BG×sin 120°=×××=,因为S六边形ABCDEF=S△BOC×6=×1×1×sin 60°×6=,所以该点恰好在图中阴影部分的概率P=1-=.
(2)由题意知圆O的面积为π3,正弦曲线y=sin x,x∈[-π,π]与x轴围成的区域记为M,根据图形的对称性得区域M的面积S=2 sin xdx=-2cos x =4,由几何概型的概率计算公式可得,随机往圆O内投一个点A,则点A落在区域M内的概率P=.
[答案] (1)C (2)B
类型(三) 与体积有关的几何概型
[例3] 已知在四棱锥PABCD中,PA⊥底面ABCD,底面ABCD是正方形,PA=AB=2,现在该四棱锥内部或表面任取一点O,则四棱锥O ABCD的体积不小于的概率为________.
[解析] 当四棱锥O ABCD的体积为时,设O到平面ABCD的距离为h,则×22×h=,解得h=.
如图所示,在四棱锥PABCD内作平面EFGH平行于底面ABCD,且平面EFGH与底面ABCD的距离为.
因为PA⊥底面ABCD,且PA=2,所以=,
又四棱锥PABCD与四棱锥PEFGH相似,
所以四棱锥O ABCD的体积不小于的概率P==3=3=.
[答案]
类型(四) 与角度有关的几何概型
[例4] 如图,四边形ABCD为矩形,AB=,BC=1,以A为圆心,1为半径作四分之一个圆弧,在∠DAB内任作射线AP,则射线AP与线段BC有公共点的概率为________.
[解析] 连接AC,如图,
因为tan∠CAB==,
所以∠CAB=,满足条件的事件是直线AP在∠CAB内,且AP与AC相交时,即直线AP与线段BC有公共点,所以射线AP与线段BC有公共点的概率P===.
[答案]
[规律探求]
看
个
性
类型(一)与类型(四)分别讲的是与长度有关和与角度有关的几何概型.
要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).
类型(二)是与面积有关的几何概型.
求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.
类型(三)是与体积有关的几何概型.
对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的问题也可利用其对立事件求解
找
共
性
建立相应的几何概型,将试验构成的总区域和所求事件构成的区域转化为几何图形,并加以度量.
(1)若一个连续变量可建立与长度有关的几何概型,则只需把这个变量放在数轴上即可;
(2)若一个随机事件需要用两个连续变量来描述,则可用这两个变量组成的有序实数对来表示它的基本事件,然后利用平面直角坐标系即可建立与面积有关的几何概型;
(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系即可建立与体积有关的几何概型
[过关训练]
1.(2019·豫东名校联考)一个多面体的直观图和三视图如图所示,点M是AB的中点,一只蝴蝶在几何体ADFBCE内自由飞翔,则它飞入几何体FAMCD内的概率为( )
A. B.
C. D.
解析:选D 由题图可知VFAMCD=×S四边形AMCD×DF=a3,VADFBCE=a3,
所以它飞入几何体FAMCD内的概率P==.
2.在区间[0,π]上随机取一个数x,则事件“sin x+cos x≥”发生的概率为________.
解析:由题意可得
即解得0≤x≤,
故所求的概率为=.
答案:
3.(2018·唐山模拟)向圆(x-2)2+(y-)2=4内随机投掷一点,则该点落在x轴下方的概率为________.
解析:如图,连接CA,CB,依题意,圆心C到x轴的距离为,所以弦AB的长为2.又圆的半径为2,所以弓形ADB的面积为×π×2-×2×=π-,所以向圆(x-2)2+(y-)2=4内随机投掷一点,则该点落在x轴下方的概率P=-.
答案:-
一、题点全面练
1.(2019·衡水联考)2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币.如图所示是一枚8克圆形金质纪念币,直径22 mm,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是( )
A. mm2 B. mm2
C. mm2 D. mm2
解析:选A 向硬币内投掷100次,恰有30次落在军旗内,所以可估计军旗的面积大约是S=×π×112=(mm2).
2.(2019·漳州一模)甲、乙、丙、丁、戊5名同学参加“《论语》知识大赛”,决出第1名到第5名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说“虽然你的成绩比乙好,但是你俩都没得到第一名”;对乙说“你当然不会是最差的”,从上述回答分析,丙是第一名的概率是( )
A. B.
C. D.
解析:选B 由于甲和乙都不可能是第一名,所以第一名只可能是丙、丁或戊.又因为所有的限制条件对丙、丁或戊都没有影响,所以这三个人获得第一名是等可能事件,所以丙是第一名的概率是.
3.(2019·郑州模拟)现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完结束的概率为( )
A. B.
C. D.
解析:选C 将5张奖票不放回地依次取出共有A=120(种)不同的取法,若活动恰好在第四次抽奖结束,则前三次共抽到2张中奖票,第四次抽到最后一张中奖票,共有CCA=36(种)取法,所以P==.
4.(2019·长沙模拟)如图是一个边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自黑色区域的概率为( )
A. B.
C.1- D.1-
解析:选C 正方形的面积为82,正方形的内切圆半径为4,中间黑色大圆的半径为2,黑色小圆的半径为1,所以白色区域的面积为π×42-π×22-4×π×12=8π,所以黑色区域的面积为82-8π.在正方形图案上随机取一点,则该点取自黑色区域的概率为P==1-.
5.(2019·郑州模拟)已知圆C:x2+y2=1,直线l:y=k(x+2),在[-1,1]上随机选取一个数k,则事件“直线l与圆C相离”发生的概率为( )
A. B.
C. D.
解析:选C 圆C:x2+y2=1的圆心C(0,0),半径r=1,圆心到直线l:y=k(x+2)的距离d==,直线l与圆C相离时d>r,即>1,解得k<-或k>,故所求的概率P==.
6.从1~9这9个自然数中任取7个不同的数,则这7个数的平均数是5的概率为________.
解析:从1~9这9个自然数中任取7个不同的数的取法共有C=36种,从(1,9),(2,8),(3,7),(4,6)中任选3组,有C=4种选法,故这7个数的平均数是5的概率P==.
答案:
7.一个三位数的百位,十位,个位上的数字依次为a,b,c,当且仅当有两个数字的和等于第三个数字时称这个三位数为“好数”(如213,134),若a,b,c∈{1,2,3,4},且a,b,c互不相同,则这个三位数为“好数”的概率是________.
解析:从1,2,3,4中任选3个互不相同的数并进行全排列,共组成A=24个三位数,而“好数”的三个位置上的数字为1,2,3或1,3,4,所以共组成2A=12个“好数”,故所求概率P==.
答案:
8.太极图是以黑白两个鱼形纹组成的圆形图案,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在如图所示的平面直角坐标系中,圆O被函数y=3sinx的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为________.
解析:根据题意,大圆的直径为函数y=3sinx的最小正周期T,又T==12,所以大圆的面积S=π·2=36π,一个小圆的面积S′=π·12=π,故在大圆内随机取一点,此点取自阴影部分的概率P===.
答案:
9.(2018·天津高考)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.
(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?
(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.
①试用所给字母列举出所有可能的抽取结果;
②设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.
解:(1)因为甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,所以应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.
(2)①从抽取的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.
②由①,不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5种.
所以事件M发生的概率P(M=.
10.在某大型活动中,甲、乙等五名志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.
(1)求甲、乙两人同时参加A岗位服务的概率;
(2)求甲、乙两人不在同一个岗位服务的概率;
(3)求五名志愿者中仅有一人参加A岗位服务的概率.
解:(1)记“甲、乙两人同时参加A岗位服务”为事件EA,那么P(EA)==,
即甲、乙两人同时参加A岗位服务的概率是.
(2)记“甲、乙两人同时参加同一岗位服务”为事件E,那么P(E)==,所以甲、乙两人不在同一岗位服务的概率是P()=1-P(E)=.
(3)因为有两人同时参加A岗位服务的概率P2==,所以仅有一人参加A岗位服务的概率P1=1-P2=.
二、专项培优练
(一)易错专练——不丢怨枉分
1.(2019·太原联考)甲、乙二人约定7:10在某处会面,甲在7:00~7:20内某一时刻随机到达,乙在7:05~7:20内某一时刻随机到达,则甲至少需等待乙5分钟的概率是( )
A. B.
C. D.
解析:选C 建立平面直角坐标系如图,x,y分别表示甲、乙二人到达的时刻,则坐标系中每个点(x,y)可对应甲、乙二人到达时刻的可能性,则甲至少等待乙5分钟应满足的条件是其构成的区域为如图阴影部分,则所求的概率P==.
2.(2019·开封模拟)如图,某建筑工地搭建的脚手架局部类似于一个2×2×3的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为( )
A. B.
C. D.
解析:选B 根据题意,最近路线就是不能走回头路,不能走重复的路,∴一共要走3次向上,2次向右,2次向前,共7次,∴最近的行走路线共有A=5 040(种).∵不能连续向上,∴先把不向上的次数排列起来,也就是2次向右和2次向前全排列为A.接下来,就是把3次向上插到4次不向上之间的空当中,5个位置排3个元素,也就是A,则最近的行走路线中不连续向上攀登的路线共有AA=1 440(种),∴其最近的行走路线中不连续向上攀登的概率P==.故选B.
3.已知等腰直角△ABC中,∠C=90°,在∠CAB内作射线AM,则使∠CAM<30°的概率为________.
解析:如图,在∠CAB内作射线AM0,使∠CAM0=30°,于是有P(∠CAM<30°)===.
答案:
(二)交汇专练——融会巧迁移
4.[与平面向量交汇]已知P是△ABC所在平面内一点,且++2=0,现将一粒黄豆随机撒在△ABC内,则黄豆落在△PBC内的概率是( )
A. B.
C. D.
解析:选C 以PB,PC为邻边作平行四边形PBDC,连接PD交BC于点O,则+=.
∵++2=0,
∴+=-2,即=-2,
由此可得,P是BC边上的中线AO的中点,点P到BC的距离等于点A到BC的距离的,∴S△PBC=S△ABC,∴将一粒黄豆随机撒在△ABC内,黄豆落在△PBC内的概率P==.
5.[与定积分交汇]点集Ω={(x,y)|0≤x≤e,0≤y≤e},A={(x,y)|y≥ex,(x,y)∈Ω},在点集Ω中任取一个元素a,则a∈A的概率为( )
A. B.
C. D.
解析:选B 如图,根据题意可知Ω表示的平面区域为正方形BCDO,面积为e2,A表示的区域为图中阴影部分,面积为 (e-ex)dx=(ex-ex)=(e-e)-(-1)=1,根据几何概型可知a∈A的概率P=.故选B.
6.[与数学文化交汇]如图,来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则( )
A.p1=p2 B.p1=p3
C.p2=p3 D.p1=p2+p3
解析:选A 不妨设△ABC为等腰直角三角形,
AB=AC=2,则BC=2,
所以区域Ⅰ的面积即△ABC的面积,
为S1=×2×2=2,
区域Ⅱ的面积S2=π×12-=2,
区域Ⅲ的面积S3=-2=π-2.
根据几何概型的概率计算公式,
得p1=p2=,p3=,
所以p1≠p3,p2≠p3,p1≠p2+p3,故选A.
7.[与解析几何交汇]双曲线C:-=1(a>0,b>0),其中a∈{1,2,3,4},b∈{1,2,3,4},且a,b取到其中每个数都是等可能的,则直线l:y=x与双曲线C的左、右支各有一个交点的概率为( )
A. B.
C. D.
解析:选B 直线l:y=x与双曲线C的左、右支各有一个交点,则>1,总基本事件数为4×4=16,满足条件的(a,b)的情况有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个,故概率为.
8.[与函数交汇]在区间[0,1]上随机取两个数a,b,则函数f(x)=x2+ax+b有零点的概率是________.
解析:函数f(x)=x2+ax+b有零点,则Δ=a2-b ≥0,∴b≤a2,∴函数f(x)=x2+ax+b有零点的概率P==.
答案:
1.古典概型
(1)古典概型的特征:
①有限性:在一次试验中,可能出现的结果是有限的,即只有有限个不同的基本事件;,②等可能性:每个基本事件出现的可能性是相等的.
一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性.
(2)古典概型的概率计算的基本步骤:
①判断本次试验的结果是否是等可能的,设出所求的事件为A;
②分别计算基本事件的总数n和所求的事件A所包含的基本事件个数m;
③利用古典概型的概率公式P(A)=,求出事件A的概率.
(3)频率的计算公式与古典概型的概率计算公式的异同
名称
不同点
相同点
频率计
算公式
频率计算中的m,n均随随机试验的变化而变化,但随着试验次数的增多,它们的比值逐渐趋近于概率值
都计算了一个比值
古典概型的
概率计算公式
是一个定值,对同一个随机事件而言,m,n都不会变化
2.几何概型
(1)概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
(2)几何概型的基本特点:
①试验中所有可能出现的结果(基本事件)有无限多个;
②每个基本事件出现的可能性相等.
(3)计算公式:
P(A)=.
几何概型应用中的关注点
(1)关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率.
(2)确定基本事件时一定要选准度量,注意基本事件的等可能性.
[小题查验基础]
一、判断题(对的打“√”,错的打“×”)
(1)与面积有关的几何概型的概率与几何图形的形状有关.( )
(2)几何概型与古典概型中的基本事件发生的可能性都是相等的,其基本事件个数都有限.( )
(3)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个事件是等可能事件.( )
(4)在古典概型中,如果事件A中基本事件构成集合A,所有的基本事件构成集合I,则事件A的概率为.( )
答案:(1)× (2)× (3)× (4)√
二、选填题
1.一枚硬币连掷2次,只有一次出现正面的概率为( )
A. B.
C. D.
解析:选D 一枚硬币连掷2次可能出现(正,正)、(反,反)、(正,反)、(反,正)四种情况,只有一次出现正面的情况有两种,故P==.
2.某路公共汽车每5分钟发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过2分钟的概率是( )
A. B.
C. D.
解析:选C 试验的全部结果构成的区域长度为5,所求事件的区域长度为2,故所求概率为P=.
3.已知四边形ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为( )
A. B.1-
C. D.1-
解析:选B 如图,依题意可知所求概率为图中阴影部分与长方形的面积比,即所求概率P===1-.
4.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.
解析:两数之和等于5有两种情况(1,4)和(2,3),总的基本事件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10种,故所求概率P==.
答案:
5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为________.
解析:P=1-=1-=.
答案:
[典例精析]
(1)(2018·全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )
A. B.
C. D.
(2)(2019·武汉调研)将一枚质地均匀的骰子投掷两次,得到的点数依次记为a和b,则方程ax2+bx+1=0有实数解的概率是( )
A. B.
C. D.
[解析] (1)不超过30的所有素数为2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有C=45种情况,而和为30的有7+23,11+19,13+17这3种情况,所以所求概率P==.
(2)投掷骰子两次,所得的点数a和b满足的关系为所以a和b的组合有36种.
若方程ax2+bx+1=0有实数解,
则Δ=b2-4a≥0,所以b2≥4a.
当b=1时,没有a符合条件;当b=2时,a可取1;当b=3时,a可取1,2;当b=4时,a可取1,2,3,4;当b=5时,a可取1,2,3,4,5,6;当b=6时,a可取1,2,3,4,5,6.
满足条件的组合有19种,则方程ax2+bx+1=0有实数解的概率P=.
[答案] (1)C (2)C
[解题技法]
1.古典概型的概率求解步骤
(1)求出所有基本事件的个数n.
(2)求出事件A包含的所有基本事件的个数m.
(3)代入公式P(A)=求解.
2.基本事件个数的确定方法
(1)列举法:此法适合于基本事件个数较少的古典概型.
(2)列表法:此法适合于从多个元素中选定两个元素的试验,也可看成坐标法.
(3)树状图法:树状图是进行列举的一种常用方法,适用于有顺序的问题及较复杂问题中基本事件数的探求.
(4)运用排列组合知识计算.
[过关训练]
1.(2019·益阳、湘潭调研)已知a∈{-2,0,1,2,3},b∈{3,5},则函数f(x)=(a2-2)ex+b为减函数的概率是( )
A. B.
C. D.
解析:选C 若函数f(x)=(a2-2)ex+b为减函数,则a2-2<0,又a∈{-2,0,1,2,3},故只有a=0,a=1满足题意,又b∈{3,5},所以函数f(x)=(a2-2)ex+b为减函数的概率是=.
2.从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( )
A. B.
C. D.
解析:选C 由题意得,所求概率P==.
3.将A,B,C,D这4名同学从左至右随机地排成一排,则“A与B相邻且A与C之间恰好有1名同学”的概率是( )
A. B.
C. D.
解析:选B A,B,C,D 4名同学排成一排有A=24种排法.当A,C之间是B时,有2×2=4种排法,当A,C之间是D时,有2种排法,所以所求概率P==.
[考法全析]
类型(一) 与长度有关的几何概型
[例1] (2019·濮阳模拟)在[-6,9]内任取一个实数m,设f(x)=-x2+mx+m,则函数f(x)的图象与x轴有公共点的概率等于( )
A. B.
C. D.
[解析] ∵f(x)=-x2+mx+m的图象与x轴有公共点,∴Δ=m2+4m≥0,∴m≤-4或m≥0,∴在[-6,9]内取一个实数m,函数f(x)的图象与x轴有公共点的概率P==,故选D.
[答案] D
类型(二) 与面积有关的几何概型
[例2] (1)(2018·潍坊模拟)如图,六边形ABCDEF是一个正六边形,若在正六边形内任取一点,则该点恰好在图中阴影部分的概率是( )
A. B.
C. D.
(2)(2019·洛阳联考)如图,圆O:x2+y2=π2内的正弦曲线y=sin x与x轴围成的区域记为M(图中阴影部分),随机往圆O内投一个点A,则点A落在区域M内的概率是( )
A. B.
C. D.
[解析] (1)设正六边形的中心为点O,BD与AC交于点G,BC=1,则BG=CG,∠BGC=120°,在△BCG中,由余弦定理得1=BG2+BG2-2BG2cos 120°,得BG=,所以S△BCG=×BG×BG×sin 120°=×××=,因为S六边形ABCDEF=S△BOC×6=×1×1×sin 60°×6=,所以该点恰好在图中阴影部分的概率P=1-=.
(2)由题意知圆O的面积为π3,正弦曲线y=sin x,x∈[-π,π]与x轴围成的区域记为M,根据图形的对称性得区域M的面积S=2 sin xdx=-2cos x =4,由几何概型的概率计算公式可得,随机往圆O内投一个点A,则点A落在区域M内的概率P=.
[答案] (1)C (2)B
类型(三) 与体积有关的几何概型
[例3] 已知在四棱锥PABCD中,PA⊥底面ABCD,底面ABCD是正方形,PA=AB=2,现在该四棱锥内部或表面任取一点O,则四棱锥O ABCD的体积不小于的概率为________.
[解析] 当四棱锥O ABCD的体积为时,设O到平面ABCD的距离为h,则×22×h=,解得h=.
如图所示,在四棱锥PABCD内作平面EFGH平行于底面ABCD,且平面EFGH与底面ABCD的距离为.
因为PA⊥底面ABCD,且PA=2,所以=,
又四棱锥PABCD与四棱锥PEFGH相似,
所以四棱锥O ABCD的体积不小于的概率P==3=3=.
[答案]
类型(四) 与角度有关的几何概型
[例4] 如图,四边形ABCD为矩形,AB=,BC=1,以A为圆心,1为半径作四分之一个圆弧,在∠DAB内任作射线AP,则射线AP与线段BC有公共点的概率为________.
[解析] 连接AC,如图,
因为tan∠CAB==,
所以∠CAB=,满足条件的事件是直线AP在∠CAB内,且AP与AC相交时,即直线AP与线段BC有公共点,所以射线AP与线段BC有公共点的概率P===.
[答案]
[规律探求]
看
个
性
类型(一)与类型(四)分别讲的是与长度有关和与角度有关的几何概型.
要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).
类型(二)是与面积有关的几何概型.
求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.
类型(三)是与体积有关的几何概型.
对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的问题也可利用其对立事件求解
找
共
性
建立相应的几何概型,将试验构成的总区域和所求事件构成的区域转化为几何图形,并加以度量.
(1)若一个连续变量可建立与长度有关的几何概型,则只需把这个变量放在数轴上即可;
(2)若一个随机事件需要用两个连续变量来描述,则可用这两个变量组成的有序实数对来表示它的基本事件,然后利用平面直角坐标系即可建立与面积有关的几何概型;
(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系即可建立与体积有关的几何概型
[过关训练]
1.(2019·豫东名校联考)一个多面体的直观图和三视图如图所示,点M是AB的中点,一只蝴蝶在几何体ADFBCE内自由飞翔,则它飞入几何体FAMCD内的概率为( )
A. B.
C. D.
解析:选D 由题图可知VFAMCD=×S四边形AMCD×DF=a3,VADFBCE=a3,
所以它飞入几何体FAMCD内的概率P==.
2.在区间[0,π]上随机取一个数x,则事件“sin x+cos x≥”发生的概率为________.
解析:由题意可得
即解得0≤x≤,
故所求的概率为=.
答案:
3.(2018·唐山模拟)向圆(x-2)2+(y-)2=4内随机投掷一点,则该点落在x轴下方的概率为________.
解析:如图,连接CA,CB,依题意,圆心C到x轴的距离为,所以弦AB的长为2.又圆的半径为2,所以弓形ADB的面积为×π×2-×2×=π-,所以向圆(x-2)2+(y-)2=4内随机投掷一点,则该点落在x轴下方的概率P=-.
答案:-
一、题点全面练
1.(2019·衡水联考)2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币.如图所示是一枚8克圆形金质纪念币,直径22 mm,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是( )
A. mm2 B. mm2
C. mm2 D. mm2
解析:选A 向硬币内投掷100次,恰有30次落在军旗内,所以可估计军旗的面积大约是S=×π×112=(mm2).
2.(2019·漳州一模)甲、乙、丙、丁、戊5名同学参加“《论语》知识大赛”,决出第1名到第5名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说“虽然你的成绩比乙好,但是你俩都没得到第一名”;对乙说“你当然不会是最差的”,从上述回答分析,丙是第一名的概率是( )
A. B.
C. D.
解析:选B 由于甲和乙都不可能是第一名,所以第一名只可能是丙、丁或戊.又因为所有的限制条件对丙、丁或戊都没有影响,所以这三个人获得第一名是等可能事件,所以丙是第一名的概率是.
3.(2019·郑州模拟)现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完结束的概率为( )
A. B.
C. D.
解析:选C 将5张奖票不放回地依次取出共有A=120(种)不同的取法,若活动恰好在第四次抽奖结束,则前三次共抽到2张中奖票,第四次抽到最后一张中奖票,共有CCA=36(种)取法,所以P==.
4.(2019·长沙模拟)如图是一个边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自黑色区域的概率为( )
A. B.
C.1- D.1-
解析:选C 正方形的面积为82,正方形的内切圆半径为4,中间黑色大圆的半径为2,黑色小圆的半径为1,所以白色区域的面积为π×42-π×22-4×π×12=8π,所以黑色区域的面积为82-8π.在正方形图案上随机取一点,则该点取自黑色区域的概率为P==1-.
5.(2019·郑州模拟)已知圆C:x2+y2=1,直线l:y=k(x+2),在[-1,1]上随机选取一个数k,则事件“直线l与圆C相离”发生的概率为( )
A. B.
C. D.
解析:选C 圆C:x2+y2=1的圆心C(0,0),半径r=1,圆心到直线l:y=k(x+2)的距离d==,直线l与圆C相离时d>r,即>1,解得k<-或k>,故所求的概率P==.
6.从1~9这9个自然数中任取7个不同的数,则这7个数的平均数是5的概率为________.
解析:从1~9这9个自然数中任取7个不同的数的取法共有C=36种,从(1,9),(2,8),(3,7),(4,6)中任选3组,有C=4种选法,故这7个数的平均数是5的概率P==.
答案:
7.一个三位数的百位,十位,个位上的数字依次为a,b,c,当且仅当有两个数字的和等于第三个数字时称这个三位数为“好数”(如213,134),若a,b,c∈{1,2,3,4},且a,b,c互不相同,则这个三位数为“好数”的概率是________.
解析:从1,2,3,4中任选3个互不相同的数并进行全排列,共组成A=24个三位数,而“好数”的三个位置上的数字为1,2,3或1,3,4,所以共组成2A=12个“好数”,故所求概率P==.
答案:
8.太极图是以黑白两个鱼形纹组成的圆形图案,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在如图所示的平面直角坐标系中,圆O被函数y=3sinx的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为________.
解析:根据题意,大圆的直径为函数y=3sinx的最小正周期T,又T==12,所以大圆的面积S=π·2=36π,一个小圆的面积S′=π·12=π,故在大圆内随机取一点,此点取自阴影部分的概率P===.
答案:
9.(2018·天津高考)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.
(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?
(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.
①试用所给字母列举出所有可能的抽取结果;
②设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.
解:(1)因为甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,所以应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.
(2)①从抽取的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.
②由①,不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5种.
所以事件M发生的概率P(M=.
10.在某大型活动中,甲、乙等五名志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.
(1)求甲、乙两人同时参加A岗位服务的概率;
(2)求甲、乙两人不在同一个岗位服务的概率;
(3)求五名志愿者中仅有一人参加A岗位服务的概率.
解:(1)记“甲、乙两人同时参加A岗位服务”为事件EA,那么P(EA)==,
即甲、乙两人同时参加A岗位服务的概率是.
(2)记“甲、乙两人同时参加同一岗位服务”为事件E,那么P(E)==,所以甲、乙两人不在同一岗位服务的概率是P()=1-P(E)=.
(3)因为有两人同时参加A岗位服务的概率P2==,所以仅有一人参加A岗位服务的概率P1=1-P2=.
二、专项培优练
(一)易错专练——不丢怨枉分
1.(2019·太原联考)甲、乙二人约定7:10在某处会面,甲在7:00~7:20内某一时刻随机到达,乙在7:05~7:20内某一时刻随机到达,则甲至少需等待乙5分钟的概率是( )
A. B.
C. D.
解析:选C 建立平面直角坐标系如图,x,y分别表示甲、乙二人到达的时刻,则坐标系中每个点(x,y)可对应甲、乙二人到达时刻的可能性,则甲至少等待乙5分钟应满足的条件是其构成的区域为如图阴影部分,则所求的概率P==.
2.(2019·开封模拟)如图,某建筑工地搭建的脚手架局部类似于一个2×2×3的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为( )
A. B.
C. D.
解析:选B 根据题意,最近路线就是不能走回头路,不能走重复的路,∴一共要走3次向上,2次向右,2次向前,共7次,∴最近的行走路线共有A=5 040(种).∵不能连续向上,∴先把不向上的次数排列起来,也就是2次向右和2次向前全排列为A.接下来,就是把3次向上插到4次不向上之间的空当中,5个位置排3个元素,也就是A,则最近的行走路线中不连续向上攀登的路线共有AA=1 440(种),∴其最近的行走路线中不连续向上攀登的概率P==.故选B.
3.已知等腰直角△ABC中,∠C=90°,在∠CAB内作射线AM,则使∠CAM<30°的概率为________.
解析:如图,在∠CAB内作射线AM0,使∠CAM0=30°,于是有P(∠CAM<30°)===.
答案:
(二)交汇专练——融会巧迁移
4.[与平面向量交汇]已知P是△ABC所在平面内一点,且++2=0,现将一粒黄豆随机撒在△ABC内,则黄豆落在△PBC内的概率是( )
A. B.
C. D.
解析:选C 以PB,PC为邻边作平行四边形PBDC,连接PD交BC于点O,则+=.
∵++2=0,
∴+=-2,即=-2,
由此可得,P是BC边上的中线AO的中点,点P到BC的距离等于点A到BC的距离的,∴S△PBC=S△ABC,∴将一粒黄豆随机撒在△ABC内,黄豆落在△PBC内的概率P==.
5.[与定积分交汇]点集Ω={(x,y)|0≤x≤e,0≤y≤e},A={(x,y)|y≥ex,(x,y)∈Ω},在点集Ω中任取一个元素a,则a∈A的概率为( )
A. B.
C. D.
解析:选B 如图,根据题意可知Ω表示的平面区域为正方形BCDO,面积为e2,A表示的区域为图中阴影部分,面积为 (e-ex)dx=(ex-ex)=(e-e)-(-1)=1,根据几何概型可知a∈A的概率P=.故选B.
6.[与数学文化交汇]如图,来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则( )
A.p1=p2 B.p1=p3
C.p2=p3 D.p1=p2+p3
解析:选A 不妨设△ABC为等腰直角三角形,
AB=AC=2,则BC=2,
所以区域Ⅰ的面积即△ABC的面积,
为S1=×2×2=2,
区域Ⅱ的面积S2=π×12-=2,
区域Ⅲ的面积S3=-2=π-2.
根据几何概型的概率计算公式,
得p1=p2=,p3=,
所以p1≠p3,p2≠p3,p1≠p2+p3,故选A.
7.[与解析几何交汇]双曲线C:-=1(a>0,b>0),其中a∈{1,2,3,4},b∈{1,2,3,4},且a,b取到其中每个数都是等可能的,则直线l:y=x与双曲线C的左、右支各有一个交点的概率为( )
A. B.
C. D.
解析:选B 直线l:y=x与双曲线C的左、右支各有一个交点,则>1,总基本事件数为4×4=16,满足条件的(a,b)的情况有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个,故概率为.
8.[与函数交汇]在区间[0,1]上随机取两个数a,b,则函数f(x)=x2+ax+b有零点的概率是________.
解析:函数f(x)=x2+ax+b有零点,则Δ=a2-b ≥0,∴b≤a2,∴函数f(x)=x2+ax+b有零点的概率P==.
答案:
相关资料
更多