2020版高考数学一轮复习课后限时集训11《函数与方程》(理数)(含解析) 试卷
展开课后限时集训(十一)
(建议用时:60分钟)
A组 基础达标
一、选择题
1.若函数f(x)=ax+b有一个零点是2,那么函数g(x)=bx2-ax的零点是( )
A.0,2 B.0,
C.0,- D.2,-
C [由题意知2a+b=0,
即b=-2a.
令g(x)=bx2-ax=0,得x=0或x==-.]
2.已知函数f(x)=-cos x,则f(x)在[0,2π]上的零点个数是( )
A.1 B.2 C.3 D.4
C [作出g(x)=与h(x)=cos x的图象如图所示,可以看到其在[0,2π]上的交点个数为3,所以函数f(x)在[0,2π]上的零点个数为3,故选C.]
3.用二分法求函数f(x)=2x+3x-7在区间[0,4]上的零点近似值,取区间中点2,则下一个存在零点的区间为( )
A.(0,1) B.(0,2)
C.(2,3) D.(2,4)
B [因为f(0)=20+0-7=-6<0,
f(4)=24+12-7>0,
f(2)=22+6-7>0,所以f(0)·f(2)<0,所以零点在区间(0,2).]
4.已知函数f(x)=2ax-a+3,若∃x0∈(-1,1),f(x0)=0,则实数a的取值范围是( )
A.(-∞,-3)∪(1,+∞) B.(-∞,-3)
C.(-3,1) D.(1,+∞)
A [当a=0时,f(x)=3,不合题意,当a≠0时,由题意知f(-1)·f(1)<0,即(-3a+3)(a+3)<0,解得a<-3或a>1,故选A.]
5.已知函数f(x)=(a∈R),若函数f(x)在R上有两个零点,则a的取值范围是( )
A.(-∞,-1) B.(-∞,0)
C.(-1,0) D.[-1,0)
D [当x>0时,f(x)=3x-1有一个零点x=,所以只需要当x≤0时,ex+a=0有一个根即可,即ex=-a.当x≤0时,ex∈(0,1],所以-a∈(0,1],即a∈[-1,0),故选D.]
二、填空题
6.已知关于x的方程x2+mx-6=0的一个根比2大,另一个根比2小,则实数m的取值范围是________.
(-∞,1) [设函数f(x)=x2+mx-6,则根据条件有f(2)<0,即4+2m-6<0,解得m<1.]
7.方程2x+3x=k的解在[1,2)内,则k的取值范围为________.
[5,10) [令函数f(x)=2x+3x-k,
则f(x)在R上是增函数.
当方程2x+3x=k的解在(1,2)内时,f(1)·f(2)<0,
即(5-k)(10-k)<0,
解得5<k<10.
当f(1)=0时,k=5.]
8.(2019·衡阳模拟)若函数f(x)=|2x-2|-b有两个零点,则实数b的取值范围是__________.
(0,2) [由f(x)=|2x-2|-b=0得|2x-2|=b.
在同一平面直角坐标系中画出y=|2x-2|与y=b的图象,如图所示,
则当0<b<2时,两函数图象有两个交点,从而函数f(x)=|2x-2|-b有两个零点.]
三、解答题
9.已知函数f(x)=x3-x2++.证明:存在x0∈,使f(x0)=x0.
[证明] 令g(x)=f(x)-x.
∵g(0)=,g=f-=-,
∴g(0)·g<0.
又函数g(x)在上连续,
∴存在x0∈,使g(x0)=0,
即f(x0)=x0.
10.已知二次函数f(x)=x2+(2a-1)x+1-2a.
(1)判断命题:“对于任意的a∈R,方程f(x)=1必有实数根”的真假,并写出判断过程;
(2)若y=f(x)在区间(-1,0)及内各有一个零点,求实数a的取值范围.
[解] (1)“对于任意的a∈R,方程f(x)=1必有实数根”是真命题.
依题意,f(x)=1有实根,即x2+(2a-1)x-2a=0有实根.
因为Δ=(2a-1)2+8a=(2a+1)2≥0对于任意的a∈R恒成立,即x2+(2a-1)x-2a=0必有实根,从而f(x)=1必有实根.
(2)依题意,要使y=f(x)在区间(-1,0)及内各有一个零点,
只需
即解得<a<.
故实数a的取值范围为.
B组 能力提升
1.已知函数f(x)=若方程f(x)-a=0有三个不同的实数根,则实数a的取值范围是( )
A.(1,3) B.(0,3)
C.(0,2) D.(0,1)
D [画出函数f(x)的图象如图所示,
观察图象可知,若方程f(x)-a=0有三个不同的实数根,则函数y=f(x)的图象与直线y=a有3个不同的交点,此时需满足0<a<1.故选D.]
2.已知函数y=f(x)是周期为2的周期函数,且当x∈[-1,1]时,f(x)=2|x|-1,则函数F(x)=f(x)-|lg x|的零点个数是( )
A.9 B.10
C.11 D.18
B [在坐标平面内画出y=f(x)与y=|lg x|的大致图象如图,由图象可知,它们共有10个不同的交点,因此函数F(x)=f(x)-|lg x|的零点个数是10.
]
3.(2019·昆明模拟)已知函数f(x)=g(x)=f(x)-a(x-2).若g(x)存在两个零点,则实数a的取值范围是________.
∪(0,+∞) [函数g(x)有两个零点,就是方程g(x)=f(x)-a(x-2)=0有两个解,也就是函数y=f(x)与y=a(x-2)的图象有两个交点.y=f(x)=的图象如图所示.直线y=a(x-2)过定点(2,0).当a=0时,两个函数的图象只有一个交点,不符合题意;当a<0时,两个函数的图象要有两个交点,则直线y=a(x-2)过点(0,1)时,斜率a取得最小值,为-,所以-≤a<0;当a>0时,两个函数的图象一定有两个交点.综上,实数a的取值范围是∪(0,+∞).]
4.已知函数f(x)=3ax2+2bx+c,a+b+c=0,f(0)>0,f(1)>0,证明a>0,并利用二分法证明方程f(x)=0在区间[0,1]内有两个实根.
[证明] ∵f(1)>0,∴3a+2b+c>0,
即3(a+b+c)-b-2c>0.
∵a+b+c=0,∴-b-2c>0,则-b-c>c,即a>c.
∵f(0)>0,∴c>0,则a>0.
在区间[0,1]内选取二等分点,
则f=a+b+c=a+(-a)=-a<0.
∵f(0)>0,f(1)>0,
∴函数f(x)在区间和上各有一个零点.
又f(x)最多有两个零点,从而f(x)=0在[0,1]内有两个实根.