数学八年级下册1 平行四边形的性质教学设计
展开第15讲
讲
平行四边形的性质
概述
【教学建议】
本节的教学重点是使学生能熟练掌握平行四边形的性质,了解性质探索的过程,学会应用平行四边形的性质解决问题。
学生学习本节时可能会在以下几个方面感到困难:
1. 平行四边形的性质探索。
2. 平行四边形的性质综合应用。
【知识导图】
教学过程
一、导入
【教学建议】
有关平行四边形的性质考题,难度不大,教师在授课过程中注重性质探索的过程。
二、知识讲解
知识点1 平行四边形的性质
1.第一环节:学习定义
定义:两组对边分别平行的四边形叫做平行四边形.
性质:①平行四边形两组对边分别平行;
②平行四边形的两组对边分别相等;
③平行四边形的两组对角分别相等;
④平行四边形的对角线互相平分
以问题串形式回顾平行四边形的概念和平行四这形的性质。温故知新。
1.平行四边形都有哪些性质?
2.回顾思考
选择题
(1)平行四边形ABCD中,∠A比∠B大20°,则∠C的度数为( )
A.60° B.80° C.100° D.120°
(2)平行四边形ABCD的周长为40cm,三角形ABC的周长为25cm, 则对角线AC长为( )
A.5cm B.15cm C.6cm D.16cm
(3)平行四边形ABCD中,对角线AC,BD交于O,则全等三角形的对数有
参考答案:
1. C. 2. A. 3.4对.
活动目的:
1.通过(1)~(3)的问题串,反馈学生对平行四边形的对边、对角性质的理解和简单应用,同时总结结论:平行四边形对角线互相平分。
活动效果:
能真实客观反馈学生对上节“平行四边形性质”的情况,并有针对性的在本节补救强化。
第二环节 探索发现,灵活运用
活动内容:
探索问题1
在上节课的做一做中,我们发现平行四边形除了边、角有特殊的关系以外,对角线还有怎样的特殊关系呢?
A.(学生思考、交流)得出:平行四边形的对角线互相平分。
B.请尝试证明这一结论
已知:如图6-4,平行四边形ABCD的对角线AC、BD相交于点O.
求证:OA=OC,OB=OD.
证明: ∵四边形ABCD是平行四边形
∴ AB=CD AB//DC
∴ ∠BAO=∠DCO ∠ABO=∠CDO
∴ △AOB≌△COD
∴ OA=OC,OB=OD.
你还有其他的证明方法吗,与同伴交流。
活动目的:
通过对上节课做一做的回顾,得出平行四边形对角线互相平分的性质,再通过严格的说理证明,深化对知识的理解。
活动效果及注意:
因为有上节课的基础,学生对于定理的证明已具备一定的基础,但是在证明完定理后应该给学生强调:定理的证明只是让学生进一步理解定理,而在定理的运用时则没必要这么麻烦,直接由平行四边形可得出其对角线互相平分。
知识点2 平行四边形性质的综合运用
活动内容
例1.如图6-5,在平行四边形ABCD中,点O是对角线AC、BD的交点,过点O的直线分别与AD、BC交于点E、F.
求证:OE=OF.
A.议论交流
B.师生共析归纳
解:∵四边形ABCD是平行四边形
∴ AD=CB AD//BC OA=OC
∴ ∠DAC=∠ACB
又∵∠AOE=∠COF
∴△AOE≌△COF
∴OE=OF
如图6-6, 平行四边形ABCD的对角线AC、BD相交于点O, ∠ADB=900,OA=6,0B=3.求AD和AC的长度.
解: ∵四边形ABCD是平行四边形
∴OA=OC=6 OB=OD=3
∴AC=12
又∵∠ADB=900
∴在Rt△ADO中,根据勾股定理得
OA2=0D2+AD2
∴AD=3√3
活动目的:
通过练一练的两个问题的训练,进一步巩固平行四边形的性质,并学会应用。
观察分析,理性升华
例2 已知,如图,在平行四边形ABCD中,平行于对角线AC的直线MN分别交DA,DC的延长线于M,N,交BA,BC于点P,点B,你能说明MQ=NP吗?
A.学生独立观察分析
B.交流探索
C.师生共析小结
解:∵四边形ABCD是平行四边形
∴AD//BC,AB//CD
即AM//CQ
又∵AC//MN
即AC//MQ
∴由平行四边形定义得四边形MQCA是平行四边形
∴MQ=AC
同理 NP=AC
∴MQ=NP
小结:利用平行四边形可以证明两线段相等
活动目的:
由学生直观操作得出的结论与简单推理进行有机结合,是对探索活动的自然延续和必要发展,本环节让学生就用的结论进行说理和推理,实验理性升华,培养语言表达能力。
三、例题精析
例题1
【题干】如图,在□ABCD 中,EF∥BC,GH∥AB,EF,GH相交于点O,那么图中共有平行四边形( )
A. 6 个 B. 7 个 C. 8 个 D. 9 个
例题2
【题干】在下列性质中,平行四边形不一定具有的是( )
A.对边相等 B.对边平行 C.对角互补 D.内角和为360°
例题3
【题干】如图,在平面直角坐标系中,四边形OABC是平行四边形,O(0,0),A(1,-2),B(3,1)则C点坐标为 .
例题4
【题干】如图,ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为( )
A.2 B.4 C.4 D.8
例题5
【题干】如图,M是平行四边形ABCD的一边AD上的任意一点,若△CMB的面积为S,△CDM的面积为S1,△ABM的面积为S2,则下列大小关系正确的为( )
A.S>S1+S2 B.S<S1+S2 C.S=S1+S2 D.无法确定
四 、课堂运用
基础
1. 某人准备设计平行四边形图案,拟以长为4cm,5cm,7cm) 的三条线段中的两条为边,另一条为对角线画不同形状的平行四边形,他可以画出形状不同的平行四边形的个数为( )
A. 1 B. 2 C. 3 D. 4
2.平行四边形ABCD中,BC,AD的长分别为(x+2)cm和(3-x)cm,则x的值为( )
A.2 B.1 C. D.
3.口ABCD中,∠A︰∠B︰∠C︰∠D可以为( )
A、1︰2︰3︰4 B、1︰2︰2︰1
C、2︰2︰1︰1 D、2︰1︰2︰1
巩固
1.如图,已知▱ABCD的对角线BD=4cm,将▱ABCD绕其对称中心O旋转180∘,则点D) 所转过的路径长为( )
A. 4πcm B. 3πcm C. 2πcm D. πcm
2.如图,在□ABCD中,AD=6,AB=4,DE平分∠ADC交BC于点E,则BE的长是( )
A.2 B.3 C.4 D.5
3.如图,EF过平行四边形ABCD的对角线的交点O,交AD于点E,交BC于点F,已知AB=4,BC=5,OE=1.5,那么四边形EFCD的周长是 .
4.如图,已知四边形ABDE是平行四边形,C为边BD延长线上一点,连结AC、CE,使AB=AC.
(1)求证:△BAD≌△AEC;
(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.
拔高
1.如图,在平面直角坐标系中,直线L经过原点,且与y轴正半轴所夹的锐角为600,过点A(0,1)作y轴的垂线交直线L于点B,过点B作直线L的垂线交y轴于点A1,以A1B、BA为邻边作□ABA1C1;过点A1作y轴的垂线交直线L于点B1,过点B1作直线L的垂线交y轴于点A2,以A2B1、B1A1为邻边做□A1B1A2C2,…;按此作法继续下去,则点Cn的坐标是_______.
2.如图,平行四边形ABCD的面积为acm2,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,连接AC1交BD于O1,以AB、AO1为邻边作平行四边形AO1C2B;…;依此类推,则平行四边形AOn﹣1CnB的面积为( )cm2.
A. B. C. D.
3.(1)如图①,▱ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC于点E,F.
求证:AE=CF.
(2)如图②,将▱ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.
求证:EI=FG.
课堂小结
平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.
平行四边形的性质:①平行四边形两组对边分别平行;
②平行四边形的两组对边分别相等;
③平行四边形的两组对角分别相等;
④平行四边形的对角线互相平分
扩展延伸
基础
1.如图,剪两张对边平行的纸条,随意交叉叠放在一起,转动其中的一张,重合部分构成一个四边形,这个四边形是____;理由是_____________。
2. 在平行四边形ABCD中,∠A:∠B:∠C=2:3:2,则∠D=( )
A.36° B.108° C.72° D.60°
3.平行四边形ABCD与等边△AEF如图放置,如果∠B=45°,则∠BAE的大小是( )
A.75° B.70° C.65° D.60°
巩固
1.平行四边形ABCD的周长32,5AB=3BC,则对角线AC的取值范围为( )
A.6<AC<10 B.6<AC<16 C.10<AC<16 D.4<AC<16
2.如图,平行四边形ABCD的周长为16cm,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为( )
A.4 B.6 C.8 D.10
3.如图1,平行四边形纸片ABCD的面积为120,AD=20,AB=18.今沿两对角线将四边形ABCD剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD、CB重合)形成对称图形戊,如图2所示,则图形戊的两条对角线长度之和是 .
拔高
1.如图,过□ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的□AEMG的面积S1与□HCFM的面积S2的大小关系是 ( )
A.S1> S2 B.S1= S2 C.S1<S2 D.不能确定
2.在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.
(1)当点D在边BC上时,如图①,求证:DE+DF=AC.
(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.
(3)若AC=6,DE=4,则DF=______.
3.分别以□ABCD(∠CDA≠90°)的三边AB,CD,DA为斜边作等腰直角三角形,△ABE,△CDG,△ADF.
(1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF,EF.请判断GF与EF的数量关系及位置关系;(只写结论,不需证明)
(2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF,EF,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由.适用学科
初中数学
适用年级
初中二年级
适用区域
北师版区域
课时时长(分钟)
120
知识点
1.平行四边形的性质
2.平行四边形性质的综合运用
教学目标
1.掌握平行四边形的性质,并能简单应用;
2.掌握平行四边形对角线互相平分的性质,学会应用平行四边形的性质;
教学重点
平行四边形性质的探索
教学难点
平行四边形性质的应用
初中数学北师大版八年级下册1 平行四边形的性质教案设计: 这是一份初中数学北师大版八年级下册1 平行四边形的性质教案设计,共22页。教案主要包含了教学建议,知识导图等内容,欢迎下载使用。
初中数学北师大版八年级下册第五章 分式与分式方程4 分式方程教案及反思: 这是一份初中数学北师大版八年级下册第五章 分式与分式方程4 分式方程教案及反思,共10页。教案主要包含了教学建议,知识导图等内容,欢迎下载使用。
北师大版3 公式法教案及反思: 这是一份北师大版3 公式法教案及反思,共10页。教案主要包含了教学建议,知识导图等内容,欢迎下载使用。