![【精品奥数】六年级上册数学思维训练讲义-第十六讲 圆的面积(二) 人教版(含答案)第1页](http://img-preview.51jiaoxi.com/1/3/5721107/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【精品奥数】六年级上册数学思维训练讲义-第十六讲 圆的面积(二) 人教版(含答案)第2页](http://img-preview.51jiaoxi.com/1/3/5721107/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【精品奥数】六年级上册数学思维训练讲义-第十六讲 圆的面积(二) 人教版(含答案)第3页](http://img-preview.51jiaoxi.com/1/3/5721107/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:【精品奥数】六年级上册数学思维训练讲义 人教版(含答案)
【精品奥数】六年级上册数学思维训练讲义-第十六讲 圆的面积(二) 人教版(含答案)
展开第十六讲 面积计算(二)
第一部分:趣味数学
两球间隙哪个大
在兴趣小组活动中,老师给同学们出了这样一道题:假定我们给地球腰上打一个箍,也给小小的足球的腰上打一个箍,要求箍打得不大不小,刚好紧紧地套住球。如果现在这两个箍的周长都增加了1米,试问把这两个箍分别套到这两个“球”上去时,“箍”和“球”之间的间隙哪个大?
【答案】一样大
第二部分:习题精讲
【例题1】如图所示,求图中阴影部分的面积。
【思路导航】
解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形(如图),等腰直角三角形的斜边等于圆的半径,斜边上的高等于斜边的一半,圆的半径为20÷2=10厘米
[3.14×102×1/4-10×(10÷2)]×2=107(平方厘米)
答:阴影部分的面积是107平方厘米。
解法二:以等腰三角形底的中点为中心点。把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差。
(20÷2)2×1/2-(20÷2)2×1/2=107(平方厘米)
答:阴影部分的面积是107平方厘米。
练习一:
1.如图所示,求阴影部分的面积(单位:厘米)
2.如图所示,用一张斜边为29厘米的红色直角三角形纸片,一张斜边为49厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形。求红蓝两张三角形纸片面积之和是多少?
【例题2】如图所示,求图中阴影部分的面积(单位:厘米)。
【思路导航】
解法一:先用长方形的面积减去小扇形的面积,得空白部分(a)的面积,再用大扇形的面积减去空白部分(a)的面积。如图所示。
3.14×62×1/4-(6×4-3.14×42×1/4)=16.82(平方厘米)
解法二:把阴影部分看作(1)和(2)两部分如图20-8所示。把大、小两个扇形面积相加,刚好多计算了空白部分和阴影(1)的面积,即长方形的面积。
3.14×42×1/4+3.14×62×1/4-4×6=16.28(平方厘米)
答:阴影部分的面积是16.82平方厘米。
练习二:
1.如图所示,△ABC是等腰直角三角形,求阴影部分的面积(单位:厘米)。
2.如图所示,三角形ABC是直角三角形,AC长4厘米,BC长2厘米。以AC、BC为直径画半圆,两个半圆的交点在AB边上。求图中阴影部分的面积。
3.如图所示,图中平行四边形的一个角为600,两条边的长分别为6厘米和8厘米,高为5.2厘米。求图中阴影部分的面积。
【例题3】在图中,正方形的边长是10厘米,求图中阴影部分的面积。
【思路导航】
解法一:先用正方形的面积减去一个整圆的面积,得空部分的一半(如图所示),再用正方形的面积减去全部空白部分。
空白部分的一半:10×10-(10÷2)2×3.14=21.5(平方厘米)
阴影部分的面积:10×10-21.5×2=57(平方厘米)
解法二:把图中8个扇形的面积加在一起,正好多算了一个正方形(如图所示),而8个扇形的面积又正好等于两个整圆的面积。
(10÷2)2×3.14×2-10×10=57(平方厘米)
答:阴影部分的面积是57平方厘米。
练习三:
1.求下面各图形中阴影部分的面积(单位:厘米)。
2.求下面各图形中阴影部分的面积(单位:厘米)。
3.求下面各图形中阴影部分的面积(单位:厘米)。
【例题4】在正方形ABCD中,AC=6厘米。求阴影部分的面积。
【思路导航】这道题的难点在于正方形的边长未知,这样扇形的半径也就不知道。但我们可以看出,AC是等腰直角三角形ACD的斜边。根据等腰直角三角形的对称性可知,斜边上的高等于斜边的一半(如图所示),
我们可以求出等腰直角三角形ACD的面积,进而求出正方形ABCD的面积,即扇形半径的平方。这样虽然半径未求出,但可以求出半径的平方,也可以把半径的平方直接代入圆面积公式计算。
既是正方形的面积,又是半径的平方为:6×(6÷2)×2=18(平方厘米)
阴影部分的面积为:18-18×3.14÷4=3.87(平方厘米)
答:阴影部分的面积是3.87平方厘米。
练习四:
1.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积。
2.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积。
3.如图所示,正方形中对角线长10厘米,过正方形两个相对的顶点以其边长为半径分别做弧。求图形中阴影部分的面积(试一试,你能想出几种办法)。
【例题5】在图的扇形中,正方形的面积是30平方厘米。求阴影部分的面积。
【思路导航】阴影部分的面积等于扇形的面积减去正方形的面积。可是扇形的半径未知,又无法求出,所以我们寻求正方形的面积与扇形面积的半径之间的关系。我们以扇形的半径为边长做一个新的正方形(如图所示),
从图中可以看出,新正方形的面积是30×2=60平方厘米,即扇形半径的平方等于60。这样虽然半径未求出,但能求出半径的平方,再把半径的平等直接代入公式计算。
3.14×(30×2)×1/4-30=17.1(平方厘米)
答:阴影部分的面积是17.1平方厘米。
练习五:
1.如图所示,平行四边形的面积是100平方厘米,求阴影部分的面积。
2.如图所示,O是小圆的圆心,CO垂直于AB,三角形ABC的面积是45平方厘米,求阴影部分的面积。
3.如图所示,半圆的面积是62.8平方厘米,求阴影部分的面积。
第三部分:数学史
祖冲之的故事
祖冲之是我国古代著名的数学家,也是天文学家,生于1500多年前的南北朝时期,河北涞源人。他最伟大的成就就是把圆周率计算到小数点后7位,领先于西方国家1000多年。
为什么说祖冲之厉害呢?这要从如何计算一个圆圈的周长说起。现在我们都知道,圆的周长=圆的直径乘以圆周率,圆周率是一个无限不循环小数,3.1415926等等,用这个公式可以方便的算出圆的周长。但在2000多年前,人们可不知道有这么方便的公式,也不知道有圆周率的存在!人们计算圆周长的方法是用直径乘以三,误差非常的大。后来,人们发现圆周率应该比三大,但是到底大多少却无法确定。祖冲之经过多年的刻苦研究,计算出圆周率在3.1415926和3.1415927之间,世界纪录协会世界将祖冲之列为第一位将圆周率值计算到第7位小数的科学家。人们为了纪念祖冲之的重大贡献,将圆周率称为“祖率”。
参考答案:
练习一:
1.5.13平方厘米 2.710.5平方厘米
练习二:
1.1.14平方厘米 2.3.85平方厘米 3.8.6平方厘米
练习三:
1.57平方厘米 2.28.5平方厘米 3.6平方厘米
练习四:
1.39.25平方厘米 2.10.75平方厘米 3.28.5平方厘米
练习五:
1.14.25平方厘米 2.45平方厘米 3.11.4平方厘米
![数学口算宝](http://img.51jiaoxi.com/images/b5b1d1ecde54d50c4354a439d5c45ddc.png)