2021高三数学北师大版(理)一轮教师用书:第12章第1节绝对值不等式
展开全国卷五年考情图解 | 高考命题规律把握 |
1.考查形式 本题为高考选做题,以解答题形式出现,分值10分. 2.考查内容 (1)参数方程、极坐标与曲线的关系; (2)由参数方程、极坐标方程求解曲线的一些基本量,主要是极坐标与直角坐标、参数方程(直线、圆、椭圆的参数方程)与普通方程的互化问题及应用等,考查知识点较为简单和稳定. 3.备考策略 从2019年高考试题可以看出,高考对该点的考查既注重基础又注重能力且难度较前几年有所加大. |
第一节 坐标系
[最新考纲] 1.了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.2.了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化.3.能在极坐标系中给出简单图形表示的极坐标方程.
1.平面直角坐标系中的坐标伸缩变换
设点P(x,y)是平面直角坐标系中的任意一点,在变换
φ:的作用下,点P(x,y)对应到点P′(x′,y′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.
2.极坐标系的概念
(1)极坐标系
如图所示,在平面内取一个定点O,叫做极点;自极点O引一条射线Ox,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.
(2)极坐标
①极径:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ.
②极角:以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为θ.
③极坐标:有序数对(ρ,θ)叫做点M的极坐标,记为M(ρ,θ).一般不作特殊说明时,我们认为ρ≥0,θ可取任意实数.
3.极坐标与直角坐标的互化
设M是平面内任意一点,它的直角坐标是(x,y),极坐标是(ρ,θ),则它们之间的关系为:
4.常见曲线的极坐标方程
曲线 | 图形 | 极坐标方程 |
圆心在极点, 半径为r的圆 | ρ=r(0≤θ<2π) | |
圆心为(r,0) 半径为r的圆 | ρ=2rcos_θ | |
圆心为, 半径为r的圆 | ρ=2rsin_θ (0≤θ<π) | |
过极点,倾斜角 为α的直线 | θ=α(ρ∈R) 或θ=α+π(θ∈R) | |
过点(a,0),与极 轴垂直的直线 | ρcos θ=a | |
过点,与 极轴平行的直线 | ρsin_θ=a (0<θ<π) |
一、思考辨析(正确的打“√”,错误的打“×”)
(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系.( )
(2)若点P的直角坐标为(1,-),则点P的一个极坐标是.( )
(3)在极坐标系中,曲线的极坐标方程不是唯一的.( )
(4)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线.( )
[答案] (1)× (2)√ (3)√ (4)×
二、教材改编
1.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( )
A. B.
C.(1,0) D.(1,π)
B [法一:由ρ=-2sin θ,得ρ2=-2ρsin θ,化成直角坐标方程为x2+y2=-2y,化成标准方程为x2+(y+1)2=1,圆心坐标为(0,-1),其对应的极坐标为.
法二:由ρ=-2sin θ=2cos,知圆心的极坐标为,故选B.]
2.若以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,则线段y=1-x(0≤x≤1)的极坐标方程为( )
A.ρ=,0≤θ≤ B.ρ=,0≤θ≤
C.ρ=cos θ+sin θ,0≤θ≤ D.ρ=cos θ+sin θ,0≤θ≤
A [∵y=1-x(0≤x≤1),∴ρsin θ=1-ρcos θ(0≤ρcos θ≤1),∴ρ=.]
3.设平面上的伸缩变换的坐标表达式为则在这一坐标变换下正弦曲线y=sin x的方程变为________.
y′=3sin 2x′ [由知
代入y=sin x中得y′=3sin 2x′.]
4.点P的直角坐标为(1,-),则点P的极坐标为________.
[因为点P(1,-)在第四象限,与原点的距离为2,且OP与x轴所成的角为-,所以点P的极坐标为.]
考点1 平面直角坐标系中的伸缩变换
伸缩变换后方程的求法
平面上的曲线y=f(x)在变换φ:的作用下的变换方程的求法是将代入y=f(x),得=f,整理之后得到y′=h(x′),即为所求变换之后的方程.
1.求椭圆+y2=1经过伸缩变换后的曲线方程.
[解] 由得到 ①
将①代入+y2=1,得+y′2=1,
即x′2+y′2=1.
因此椭圆+y2=1经伸缩变换后得到的曲线方程是x2+y2=1.
2.将圆x2+y2=1变换为椭圆+=1的一个伸缩变换公式为φ:求a,b的值.
[解] 由得代入x2+y2=1中得+=1,
所以a2=9,b2=4,即a=3,b=2.
解答该类问题应明确两点:一是根据平面直角坐标系中的伸缩变换公式的意义与作用求解;二是明确变换前的点P(x,y)与变换后的点P′(x′,y′)的坐标关系,用方程思想求解.
考点2 极坐标系与直角坐标系的互化
1.极坐标方程与直角坐标方程的互化方法
(1)直角坐标方程化为极坐标方程:将公式x=ρcos θ及y=ρsin θ直接代入直角坐标方程并化简即可.
(2)极坐标方程化为直角坐标方程:通过变形,构造出形如ρcos θ,ρsin θ,ρ2的形式,再应用公式进行代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形技巧.
2.极角的确定方法
由tan θ确定角θ时,应根据点P所在象限取最小正角.在这里要注意:当x≠0时,θ角才能由tan θ=按上述方法确定.当x=0时,tan θ没有意义,这时可分三种情况处理:当x=0,y=0时,θ可取任何值;当x=0,y>0时,可取θ=;当x=0,y<0时,可取θ=.
(1)(2019·广州模拟)在极坐标系下,已知圆O:ρ=cos θ
+sin θ和直线l:ρsin=(ρ≥0,0≤θ<2π),以极点为原点,极轴为x轴的正半轴建立直角坐标系.
②求圆O和直线l的直角坐标方程;
③当θ∈(0,π)时,求直线l与圆O的公共点的极坐标.
(2)(2019·全国卷Ⅲ)如图,在极坐标系Ox中,A(2,0),B,C,D(2,π),弧,,所在圆的圆心分别是(1,0),,(1,π),曲线M1是弧,曲线M2是弧,曲线M3是弧.
①分别写出M1,M2,M3的极坐标方程;
②曲线M由M1,M2,M3构成,若点P在M上,且|OP|=,求P的极坐标.
[解] (1)①由圆O:ρ=cos θ+sin θ,得ρ2=ρcos θ+ρsin θ.
∵∴ρ2=x2+y2,
代入ρ2=ρcos θ+ρsin θ,得x2+y2=x+y,故圆O的直角坐标方程为x2+y2-x-y=0.
由直线l:ρsin=,得ρsin θ-ρcos θ=1.
∵∴y-x=1.
故直线l的直角坐标方程为x-y+1=0.
②由①知圆O与直线l的直角坐标方程,
由解得即圆O与直线l在直角坐标系下的公共点为(0,1),
又∵θ∈(0,π),∴点(0,1)的极坐标为.
(2)①由题设可得,弧,,所在圆的极坐标方程分别为ρ=2cos θ,ρ=2sin θ,ρ=-2cos θ.所以M1的极坐标方程为ρ=2cos θ,M2的极坐标方程为ρ=2sin θ,M3的极坐标方程为ρ=-2cos θ.
②设P(ρ,θ),由题设及(1)知:
若0≤θ≤,则2cos θ=,解得θ=;
若≤θ≤,则2sin θ=,解得θ=或θ=;
若≤θ≤π,则-2cos θ=,解得θ=.
综上,P的极坐标为或或或.
(1)极坐标与直角坐标的互化依据是x=ρcos θ,y=ρsin θ;(2)互化时要注意前后的等价性.
[教师备选例题]
在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.曲线C的极坐标方程为ρcos=1(0≤θ<2π),M,N分别为曲线C与x轴,y轴的交点.
(1)写出曲线C的直角坐标方程,并求M,N的极坐标;
(2)设MN的中点为P,求直线OP的极坐标方程.
[解] (1)由ρcos=1得
ρ=1.
从而曲线C的直角坐标方程为x+y=1,即x+y-2=0.
当θ=0时,ρ=2,所以M(2,0).
当θ=时,ρ=,所以N.
(2)M点的直角坐标为(2,0),N点的直角坐标为.
所以P点的直角坐标为,
则P点的极坐标为.
所以直线OP的极坐标方程为θ=(ρ∈R).
已知圆O1和圆O2的极坐标方程分别为ρ=2,ρ2-2
ρcos=2.
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过两圆交点的直线的极坐标方程.
[解] (1)由ρ=2知ρ2=4,
所以圆O1的直角坐标方程为x2+y2=4.
因为ρ2-2ρcos=2,
所以ρ2-2ρ=2,
即ρ2-2ρcos θ-2ρsin θ=2.
所以圆O2的直角坐标方程为x2+y2-2x-2y-2=0.
(2)将两圆的直角坐标方程相减,
得经过两圆交点的直线方程为x+y=1.
化为极坐标方程为ρcos θ+ρsin θ=1,
即ρsin=.
考点3 极坐标方程的应用
利用极坐标系解决问题的技巧
(1)用极坐标系解决问题时要注意题目中的几何关系,如果几何关系不容易通过极坐标表示时,可以先化为直角坐标方程,将不熟悉的问题转化为熟悉的问题加以解决.
(2)已知极坐标方程解答最值问题时,通常可转化为三角函数模型求最值问题,这种方法比在直角坐标系中求最值的运算量小.
(3)根据极坐标方程判断曲线的位置关系时,只需联立曲线的极坐标方程得方程组,判断方程组解的情况即可.
(2017·全国卷Ⅱ)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcos θ=4.
(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|·|OP|=16,求点P的轨迹C2的直角坐标方程;
(2)设点A的极坐标为,点B在曲线C2上,求△OAB面积的最大值.
[解] (1)设P的极坐标为(ρ,θ)(ρ>0),M的极坐标为(ρ1,θ)(ρ1>0).
由题意知|OP|=ρ,|OM|=ρ1=.
由|OM|·|OP|=16得C2的极坐标方程为ρ=4cos θ(ρ>0).
因此C2的直角坐标方程为(x-2)2+y2=4(x≠0).
(2)设点B的极坐标为(ρB,α)(ρB>0).
由题设知|OA|=2,ρB=4cos α,于是△OAB的面积
S=|OA|·ρB·sin∠AOB=4cos α·
=2≤2+.
当α=-时,S取得最大值2+.
所以△OAB面积的最大值为2+.
求线段的长度有两种方法.方法一,先将极坐标系下点的坐标、曲线方程转化为平面直角坐标系下的点的坐标、曲线方程,然后求线段的长度.方法二,直接在极坐标系下求解,设A(ρ1,θ1),B(ρ2,θ2),则|AB|=;如果直线过极点且与另一曲线相交,求交点之间的距离时,求出曲线的极坐标方程和直线的极坐标方程及交点的极坐标,则|ρ1-ρ2|即为所求.
[教师备选例题]
(2016·全国卷Ⅰ)在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cos θ.
(1)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;
(2)直线C3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C1与C2的公共点都在C3上,求a.
[解] (1)消去参数t得到C1的普通方程为x2+(y-1)2=a2,则C1是以(0,1)为圆心,a为半径的圆.
将x=ρcos θ,y=ρsin θ代入C1的普通方程中,得到C1的极坐标方程为ρ2-2ρsin θ+1-a2=0.
(2)曲线C1,C2的公共点的极坐标满足方程组
若ρ≠0,由方程组得16cos2θ-8sin θcos θ+1-a2=0,
由已知tan θ=2,可得16cos2θ-8sin θcos θ=0,
从而1-a2=0,解得a=-1(舍去)或a=1.
当a=1时,极点也为C1,C2的公共点,且在C3上.
所以a=1.
1.在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(1)求C1,C2的极坐标方程;
(2)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.
[解] (1)因为x=ρcos θ,y=ρsin θ,
所以C1的极坐标方程为ρcos θ=-2,
C2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.
(2)将θ=代入ρ2-2ρcos θ-4ρsin θ+4=0,得
ρ2-3ρ+4=0,解得ρ1=2,ρ2=.
故ρ1-ρ2=,即|MN|=.
由于C2的半径为1,所以△C2MN的面积为.
2.(2019·长春模拟)在极坐标系中,直线C1的极坐标方程为ρsin θ=2,M是C1上任意一点,点P在射线OM上,且满足|OP|·|OM|=4,记点P的轨迹为C2.
(1)求曲线C2的极坐标方程;
(2)求曲线C2上的点到直线ρcos=距离的最大值.
[解] (1)设P(ρ1,θ),M(ρ2,θ),
由|OP|·|OM|=4,
得ρ1ρ2=4,即ρ2=.
因为M是C1上任意一点,所以ρ2sin θ=2,
即sin θ=2,ρ1=2sin θ.
所以曲线C2的极坐标方程为ρ=2sin θ.
(2)由ρ=2sin θ,得ρ2=2ρsin θ,即x2+y2-2y=0,
化为标准方程为x2+(y-1)2=1,
则曲线C2的圆心坐标为(0,1),半径为1,
由直线ρcos=,
得ρcos θcos -ρsin θsin =,
即x-y=2,
圆心(0,1)到直线x-y=2的距离为
d==,
所以曲线C2上的点到直线ρcos=距离的最大值为1+.