2021高三数学北师大版(理)一轮教师用书:第1章第1节集合
展开全国卷五年考情图解 | 高考命题规律把握 |
说明:“Ⅰ1”指全国卷Ⅰ第1题,“Ⅱ1”指全国卷Ⅱ第1题,“Ⅲ1”指全国卷Ⅲ第1题. | 1.考查形式 本章在高考中一般考查1或2个小题,主要以选择题为主,很少以填空题的形式出现. 2.考查内容 从考查内容来看,集合主要有三方面考查:一是集合中元素的特性;二是集合间的关系;三是集合的运算,包含集合的交、并、补集运算;常用逻辑用语主要从四个方面考查:分别为命题及其关系、充分必要条件的判断、逻辑联结词“且”“或”“非”以及全称量词与存在量词. 3.备考策略 (1)熟练掌握解决以下问题的方法和规律 ①集合的交、并、补集运算问题; ②充分条件、必要条件的判断问题; ③含有“且”“或”“非”的命题的真假性的判断问题; ④含有一个量词的命题的否定问题. (2)重视数形结合、分类讨论、转化与化归思想的应用. |
第一节 集合
[最新考纲] 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义.3.(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn图表达集合间的基本关系及集合的基本运算.
1.集合与元素
(1)集合中元素的三个特性:确定性、互异性、无序性.
(2)元素与集合的关系是属于或不属于,用符号∈和∉表示.
(3)集合的三种表示方法:列举法、描述法、Venn图法.
(4)常见数集的记法
集合 | 自然数集 | 正整数集 | 整数集 | 有理数集 | 实数集 |
符号 | N | N*(或N+) | Z | Q | R |
2.集合间的基本关系
关系 | 自然语言 | 符号语言 | Venn图 |
子集 | 集合A中所有元素都在集合B中(即若x∈A,则x∈B) | A⊆B或(B⊇A) | |
真子集 | 集合A是集合B的子集,且集合B中至少有一个元素不在集合A中 | AB或BA | |
集合 相等 | 集合A,B中的元素相同或集合A,B互为子集 | A=B |
3.集合的基本运算
运算 | 自然语言 | 符号语言 | Venn图 |
交集 | 由属于集合A且属于集合B的所有元素组成的集合 | A∩B={x|x∈A且x∈B} | |
并集 | 由所有属于集合A或属于集合B的元素组成的集合 | A∪B={x|x∈A或x∈B} | |
补集 | 由全集U中不属于集合A的所有元素组成的集合 | ∁UA={x|x∈U且x∉A} |
1.集合子集的个数
对于有限集合A,其元素个数为n,则集合A的子集个数为2n,真子集个数为2n-1,非空真子集个数为2n-2.
2.集合的运算性质
(1)并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.
(2)交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.
(3)补集的性质:A∪(∁UA)=U;A∩(∁UA)=∅;
∁U(∁UA)=A;∁U(A∩B)=(∁UA)∪(∁UB);∁U(A∪B)=(∁UA)∩
(∁UB).
一、思考辨析(正确的打“√”,错误的打“×”)
(1)任何一个集合都至少有两个子集.( )
(2){x|y=x2}={y|y=x2}={(x,y)|y=x2}.( )
(3)若{x2,1}={0,1},则x=0,1.( )
(4)直线y=x+3与y=-2x+6的交点组成的集合是{1,4}.( )
[答案] (1)× (2)× (3)× (4)×
二、教材改编
1.若集合A={x∈N|x≤2},a=,则下列结论正确的是( )
A.{a}⊆A B.a⊆A
C.{a}∈A D.a∉A
D [由题意知A={0,1,2},由a=,知a∉A.]
2.已知集合M={0,1,2,3,4},N={1,3,5},则集合M∪N的子集的个数为________.
64 [∵M={0,1,2,3,4},N={1,3,5},
∴M∪N={0,1,2,3,4,5},
∴M∪N的子集有26=64个.]
3.已知U={α|0°<α<180°},A={x|x是锐角},B={x|x是钝角},则∁U(A∪B)=________.
[答案] {x|x是直角}
4.方程组的解集为________.
[由得
故方程组的解集为.]
5.已知集合A={x|x2-x-6<0},集合B={x|x-1<0},则A∩B=________,A∪B=________.
(-2,1) (-∞,3) [∵A={x|-2<x<3},B={x|x-1<0}={x|x<1},
∴A∩B={x|-2<x<1},A∪B={x|x<3}.]
考点1 集合的概念
与集合中的元素有关的问题的求解思路
(1)确定集合的元素是什么,即集合是数集还是点集.
(2)看清元素的限制条件.
(3)根据限制条件求参数的值或确定集合中元素的个数.
1.(2018·全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )
A.9 B.8
C.5 D.4
A [由x2+y2≤3知,-≤x≤,-≤y≤.又x∈Z,y∈Z,所以x∈{-1,0,1},y∈{-1,0,1},所以A中元素的个数为CC=9,故选A.]
2.已知集合A={m+2,2m2+m},若3∈A,则m的值为________.
- [由题意得m+2=3或2m2+m=3,
则m=1或m=-.
当m=1时,m+2=3且2m2+m=3,根据集合中元素的互异性可知不满足题意;
当m=-时,m+2=,而2m2+m=3,符合题意,
故m=-.]
3.若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a=________.
0或 [当a=0时,显然成立;当a≠0时,Δ=(-3)2-8a=0,即a=.]
4.已知a,b∈R,若={a2,a+b,0},则a2 020+b2 020=________.
1 [由已知得a≠0,则=0,
所以b=0,于是a2=1,即a=1或a=-1,又根据集合中元素的互异性可知a=1应舍去,因此a=-1,故a2 020+b2 020=(-1)2 020+02 020=1.]
(1)求解此类问题时,要特别注意集合中元素的互异性,如T2,T4.(2)常用分类讨论的思想方法求解集合问题,如T3.
考点2 集合的基本关系
判断两集合关系的方法
(1)列举法:用列举法表示集合,再从元素中寻求关系.
(2)化简集合法:用描述法表示的集合,若代表元素的表达式比较复杂,往往需化简表达式,再寻求两个集合的关系.
(1)(2019·沈阳模拟)已知集合A={x|y=,x∈R},B={x|x=m2,m∈A},则( )
A.AB B.BA
C.A⊆B D.B=A
(2)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为( )
A.1 B.2
C.3 D.4
(3)已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,则实数m的取值范围为________.
(1)B (2)D (3)(-∞,3] [(1)由题意知A={x|y=,x∈R},
所以A={x|-1≤x≤1}.
所以B={x|x=m2,m∈A}={x|0≤x≤1},
所以BA,故选B.
(2)因为A={1,2},B={1,2,3,4},A⊆C⊆B,则集合C可以为:{1,2},{1,2,3},{1,2,4},{1,2,3,4}共4个.
(3)因为B⊆A,
所以①若B=∅,则2m-1<m+1,此时m<2.
②若B≠∅,则解得2≤m≤3.
由①②可得,符合题意的实数m的取值范围为(-∞,3].]
[母题探究]
1.(变问法)本例(3)中,若BA,求m的取值范围.
[解] 因为BA,
①若B=∅,成立,此时m<2.
②若B≠∅,则且边界点不能同时取得,解得2≤m≤3.
综合①②,m的取值范围为(-∞,3].
2.(变问法)本例(3)中,若A⊆B,求m的取值范围.
[解] 若A⊆B,则即所以m的取值范围为∅.
3.(变条件)若将本例(3)中的集合A改为A={x|x<-2或x>5},试求m的取值范围.
[解] 因为B⊆A,
所以①当B=∅时,2m-1<m+1,即m<2,符合题意.
②当B≠∅时,或
解得或即m>4.
综上可知,实数m的取值范围为(-∞,2)∪(4,+∞).
(1)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn图等来直观解决这类问题.
(2)空集是任何集合的子集,当题目条件中有B⊆A时,应分B=∅和B≠∅两种情况讨论.
1.设M为非空的数集,M⊆{1,2,3},且M中至少含有一个奇数元素,则这样的集合M共有( )
A.6个 B.5个
C.4个 D.3个
A [由题意知,M={1},{3},{1,2},{1,3},{2,3},{1,2,3},共6个.]
2.若集合A={1,2},B={x|x2+mx+1=0,x∈R},且B⊆A,则实数m的取值范围为________.
[-2,2) [①若B=∅,则Δ=m2-4<0,
解得-2<m<2,符合题意;
②若1∈B,则12+m+1=0,
解得m=-2,此时B={1},符合题意;
③若2∈B,则22+2m+1=0,
解得m=-,此时B=,不合题意.
综上所述,实数m的取值范围为[-2,2).]
考点3 集合的基本运算
集合运算三步骤
集合的运算
(1)(2019·全国卷Ⅰ)已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=( )
A.{x|-4<x<3} B.{x|-4<x<-2}
C.{x|-2<x<2} D.{x|2<x<3}
(2)(2019·浙江高考)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁UA)∩B=( )
A.{-1} B.{0,1}
C.{-1,2,3} D.{-1,0,1,3}
(3)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B等于( )
A.(-1,1) B.(0,1)
C.(-1,+∞) D.(0,+∞)
(1)C (2)A (3)C [(1)∵N={x|x2-x-6<0}={x|-2<x<3},M={x|-4<x<2},
∴M∩N={x|-2<x<2},故选C.
(2)∵∁UA={-1,3},∴(∁UA)∩B={-1},故选A.
(3)∵A={y|y>0},B={x|-1<x<1},
∴A∪B=(-1,+∞),故选C.]
[逆向问题] 已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁UB)∩A={9},则A=( )
A.{1,3} B.{3,7,9}
C.{3,5,9} D.{3,9}
D [法一:(直接法)因为A∩B={3},所以3∈A,又(∁UB)∩A={9},所以9∈A.若5∈A,则5∉B(否则5∈A∩B),从而5∈∁UB,则(∁UB)∩A={5,9},与题中条件矛盾,故5∉A.同理,1∉A,7∉A,故A={3,9}.
法二:(Venn图)如图所示.
]
集合运算的常用方法
(1)若集合中的元素是离散的,常用Venn图求解.
(2)若集合中的元素是连续的实数,则用数轴表示,此时要注意端点的情况.
利用集合的运算求参数
(1)集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为( )
A.0 B.1
C.2 D.4
(2)已知集合A={x|x<a},B={x|x2-3x+2<0},若A∩B=B,则实数a的取值范围是( )
A.a<1 B.a≤1
C.a>2 D.a≥2
(1)D (2)D [(1)根据并集的概念,可知{a,a2}={4,16},故只能是a=4.
(2)B={x|x2-3x+2<0}={x|1<x<2},
又A∩B=B,故B⊆A.
又A={x|x<a},结合数轴,可知a≥2.]
利用集合的运算求参数的值或取值范围的方法
(1)若集合中的元素能一一列举,则一般先用观察法得到不同集合中元素之间的关系,再列方程(组)求解.如T(1).
(2)与不等式有关的集合,一般利用数轴解决,要注意端点值能否取到,如T(2).
提醒:在求出参数后,注意结果的验证(满足互异性).
[教师备选例题]
1.已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为( )
A.77 B.49
C.45 D.30
C [如图,集合A表示如图所示的所有圆点“”,集合B表示如图所示的所有圆点“”+所有圆点“”,集合A⊕B显然是集合{(x,y)||x|≤3,|y|≤3,x,y∈Z}中除去四个点{(-3,-3),(-3,3),(3,-3),(3,3)}之外的所有整点(即横坐标与纵坐标都为整数的点),则集合A⊕B表示如图所示的所有圆点“”+所有圆点“”+所有圆点“”,共45个.故A⊕B中元素的个数为45.故选C.
]
2.设集合A={x|x2+2x-3>0},集合B={x|x2-2ax-1≤0,a>0},若A∩B中恰含有一个整数,则实数a的取值范围是( )
A. B.
C. D.(1,+∞)
B [A={x|x2+2x-3>0}={x|x>1或x<-3},设函数f(x)=x2-2ax-1,因为函数f(x)=x2-2ax-1图像的对称轴为直线x=a(a>0),f(0)=-1<0,根据对称性可知若A∩B中恰有一个整数,则这个整数为2,
所以有即所以
即≤a<.故选B.]
1.(2019·全国卷Ⅱ)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=( )
A.(-∞,1) B.(-2,1)
C.(-3,-1) D.(3,+∞)
A [由题意得A={x|x<2或x>3},B={x|x<1},
∴A∩B={x|x<1}.]
2.(2019·洛阳模拟)已知全集U=R,集合A={x|x2-3x-4>0},B={x|-2≤x≤2},则如图所示阴影部分所表示的集合为( )
A.{x|-2≤x<4} B.{x|x≤2或x≥4}
C.{x|-2≤x≤-1} D.{x|-1≤x≤2}
D [依题意得A={x|x<-1或x>4},因此∁RA={x|-1≤x≤4},题中的阴影部分所表示的集合为(∁RA)∩B={x|-1≤x≤2},故选D.]
3.已知A={1,2,3,4},B={a+1,2a}.若A∩B={4},则a=________.
3 [因为A∩B={4},所以a+1=4或2a=4.若a+1=4,则a=3,此时B={4,6},符合题意;若2a=4,则a=2,此时B={3,4},不符合题意.综上,a=3.]