- 课时作业(五十四) 定点、定值、探索性问题 试卷 2 次下载
- 课时作业(五十五) 算法初步 练习 试卷 2 次下载
- 课时作业(五十七) 用样本估计总体 练习 试卷 3 次下载
- 课时作业(五十八) 变量间的相关关系与统计案例 练习 试卷 3 次下载
- 课时作业(五十九) 随机事件的概率 练习 试卷 2 次下载
课时作业(五十六) 随机抽样 练习
展开课时作业(五十六) 随机抽样
一、选择题
1.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270,使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:
①7,34,61,88,115,142,169,196,223,250
②5,9,100,107,111,121,180,195,200,265
③11,38,65,92,119,146,173,200,227,254
④30,57,84,111,138,165,192,219,246,270
关于上述样本的下列结论中,正确的是( )
A.②、③都不能为系统抽样
B.②、④都不能为分层抽样
C.①、④都可能为系统抽样
D.①、③都可能为分层抽样
解析:因为③为系统抽样,所以选项A不对;因为②可能是分层抽样,所以选项B不对;因为④不为系统抽样,所以选项C不对,故选D.
答案:D
2.某工厂生产A,B,C三种不同型号的产品,产品的数量之比依次为3:4:7,现在用分层抽样的方法抽出容量为n的样本,样本中A型号产品有15件,那么样本容量n为( )
A.50 B.60
C.70 D.80
解析:由分层抽样方法得×n=15,解之得n=70.
答案:C
3.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人. 若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为( )
A.101 B.808
C.1 212 D.2 012
解析:由题意知抽样比为,而四个社区一共抽取的驾驶员人数为12+21+25+43=101,故有=,解得N=808.
答案:B
4.某工厂在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a,b,c,且a,b,c构成等差数列,则第二车间生产的产品数为( )
A.800 B.1 000
C.1 200 D.1 500
解析:因为a,b,c成等差数列,所以2b=a+c,即第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占12月份生产总数的三分之一,即为1 200双皮靴.
答案:C
5.(2016·长沙四校联考)高三某班有学生56人,现将所有同学随机编号,用系统抽样的方法,抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为( )
A.13 B.17
C.19 D.21
解析:因为47-33=14,所以由系统抽样的定义可知样本中的另一个学生的编号为5+14=19.
答案:C
6.某县老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )
类别 | 人数 |
老年教师 | 900 |
中年教师 | 1 800 |
青年教师 | 1 600 |
合计 | 4 300 |
A.90 B.100
C.180 D.300
解析:设该样本中的老年教师人数为x,由题意及分层抽样的特点得=,故x=180.
答案:C
二、填空题
7.利用随机数表法对一个容量为500,编号为000,001,002,…,499的产品进行抽样检验,抽取一个容量为10的样本,选取方法是从随机数表第12行第5列、第6列、第7列数字开始由左到右依次选取三个数字(下面摘取了随机数表中的第11行至第12行),根据下表,读出的第3个数是__________.
18 18 07 92 45 44 17 16 58 09 79 83 86 19 62 06 76 50 03 10 55 23 64 05 05
26 62 38 97 75 84 16 07 44 99 83 11 46 32 24 20 14 85 88 45 10 93 72 88 71
解析:最先读到的数据的编号是389,向右读下一个数是775,775大于499,故舍去,再下一个数是841,舍去,再下一个数是607,舍去,再下一个数是449,再下一个数是983,舍去,再下一个数是114.故读出的第3个数是114.
答案:114
8.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是__________.
解析:设第1组抽出的号码为x,则第16组应抽出的号码是8×15+x=126,所以x=6.
答案:6
9.某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为__________.
解析:设抽取的男生人数为x,男生有500人,根据分层抽样的特点,知=,所以x=25.
答案:25
三、解答题
10.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,求剩下的四个号码?
解析:编号组数为5,间隔为=12,
因为在第一组抽得04号:
4+12=16,16+12=28,28+12=40,40+12=52,
所以其余4个号码为16,28,40,52.
11.某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施抽取.
解析:用分层抽样方法抽取.
具体实施抽取如下:
(1)∵20100=15,∴=2,=14,=4,
∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.
(2)副处级以上干部与工人的人数较少,他们分别按1~10编号与1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人采用00,01,02,…,69编号,然后用随机数法抽取14人.
(3)将2人,4人,14人的编号汇合在一起就取得了容量为20的样本.
12.某校进入高中数学竞赛复赛的学生中,高一年级有6人,高二年级有12人,高三年级有24人,现采用分层抽样的方法从这些学生中抽取7人进行采访.
(1)求应从各年级分别抽取的人数;
(2)若从抽取的7人中再随机抽取2人做进一步了解.
①列出所有可能的抽取结果;
②求抽取的2人均为高三年级学生的概率.
解析:(1)因为高一,高二,高三的人数比为6∶12∶24=1∶2∶4,则用分层抽样的方法从这些学生中抽取7人,高一,高二,高三抽取的人数分别为1,2,4.
(2)①若抽取的7人中高一学生记为a,高二的两个学生记为b,c,高三的四个学生记为A,B,C,D,则抽取2人的结果是(a,b),(a,c),(a,A),(a,B),(a,C),(a,D),(b,c),(b,A),(b,B),(b,C),(b,D),(c,A),(c,B),(c,C),(c,D),(A,B),(A,C),(A,D),(B,C),(B,D),(C,D),共21种结果.
②抽取的2人均为高三年级学生的有(A,B),(A,C),(A,D),(B,C),(B,D),(C,D),共6种结果.
则抽取的2人均为高三年级学生的概率P==.