|教案下载
搜索
    上传资料 赚现金
    2020新课标高考数学二轮讲义:第二部分专题一第1讲 三角函数的图象与性质
    立即下载
    加入资料篮
    2020新课标高考数学二轮讲义:第二部分专题一第1讲 三角函数的图象与性质01
    2020新课标高考数学二轮讲义:第二部分专题一第1讲 三角函数的图象与性质02
    2020新课标高考数学二轮讲义:第二部分专题一第1讲 三角函数的图象与性质03
    还剩20页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020新课标高考数学二轮讲义:第二部分专题一第1讲 三角函数的图象与性质

    展开
    

    第1讲 三角函数的图象与性质

    [做真题]
    题型一 三角函数图象及其变换
    1.(2017·高考全国卷Ⅰ)已知曲线C1:y=cos x,C2:y=sin,则下面结论正确的是(  )
    A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
    B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
    C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
    D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
    解析:选D.易知C1:y=cos x=sin,把曲线C1上的各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin的图象,再把所得函数的图象向左平移个单位长度,可得函数y=sin
    =sin的图象,即曲线C2,故选D.
    2.(2016·高考全国卷Ⅲ)函数y=sin x-cos x的图象可由函数y=sin x+cos x的图象至少向右平移________个单位长度得到.
    解析:函数y=sin x-cos x=2sin的图象可由函数y=sin x+cos x=2sin的图象至少向右平移个单位长度得到.
    答案:
    题型二 三角函数的性质
    1.(2019·高考全国卷Ⅱ)下列函数中,以为周期且在区间单调递增的是(  )
    A.f(x)=|cos 2x|    B.f(x)=|sin 2x|
    C.f(x)=cos|x| D.f(x)=sin|x|
    解析:选A.A中,函数f(x)=|cos 2x|的周期为,当x∈时,2x∈,函数f(x)单调递增,故A正确;B中,函数f(x)=|sin 2x|的周期为,当x∈时,2x∈,函数f(x)单调递减,故B不正确;C中,函数f(x)=cos|x|=cos x的周期为2π,故C不正确;D中,f(x)=sin|x|=由正弦函数图象知,在x≥0和x<0时,f(x)均以2π为周期,但在整个定义域上f(x)不是周期函数,故D不正确.故选A.
    2.(2019·高考全国卷Ⅰ)关于函数f(x)=sin|x|+|sin x|有下述四个结论:
    ①f(x)是偶函数;
    ②f(x)在区间单调递增;
    ③f(x)在[-π,π]有4个零点;
    ④f(x)的最大值为2.
    其中所有正确结论的编号是(  )
    A.①②④ B.②④
    C.①④ D.①③
    解析:选C.通解:f(-x)=sin|-x|+|sin(-x)|=sin|x|+|sin x|=f(x),所以f(x)为偶函数,故①正确;当 优解:因为f(-x)=sin|-x|+|sin(-x)|=sin|x|+|sin x|=f(x),所以f(x)为偶函数,故①正确,排除B;当 3.(2018·高考全国卷Ⅱ)若f(x)=cos x-sin x在[-a,a]是减函数,则a的最大值是(  )
    A. B.
    C. D.π
    解析:选A.法一:f(x)=cos x-sin x=cos,且函数y=cos x在区间[0,π]上单调递减,则由0≤x+≤π,得-≤x≤.因为f(x)在[-a,a]上是减函数,所以解得a≤,所以0 法二:因为f(x)=cos x-sin x,所以f′(x)=-sin x-cos x,则由题意,知f′(x)=-sin x-cos x≤0在[-a,a]上恒成立,即sin x+cos x≥0,即sin≥0在[-a,a]上恒成立,结合函数y=sin的图象可知有解得a≤,所以0 4.(2017·高考全国卷Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是(  )
    A.f(x)的一个周期为-2π
    B.y=f(x)的图象关于直线x=对称
    C.f(x+π)的一个零点为x=
    D.f(x)在(,π)单调递减
    解析:选D.根据函数解析式可知函数f(x)的最小正周期为2π,所以函数的一个周期为-2π,A正确;当x=时,x+=3π,所以cos=-1,所以B正确;f(x+π)=cos=cos,当x=时,x+=,所以f(x+π)=0,所以C正确;函数f(x)=cos在上单调递减,在上单调递增,故D不正确.所以选D.
    5.(2016·高考全国卷Ⅰ)已知函数f(x)=sin(ωx+φ),x=-为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在单调,则ω的最大值为(  )
    A.11 B.9
    C.7 D.5
    解析:选B.因为x=-为函数f(x)的零点,x=为y=f(x)图象的对称轴,所以=+(k∈Z,T为周期),得T=(k∈Z).又f(x)在单调,所以T≥,k≤,又当k=5时,ω=11,φ=-,f(x)在不单调;当k=4时,ω=9,φ=,f(x)在单调,满足题意,故ω=9,即ω的最大值为9.
    6.(2017·高考全国卷Ⅱ)函数f(x)=sin2x+cos x-的最大值是________.
    解析:依题意,f(x)=sin2x+cos x-=-cos2x+cos x+=-+1,因为x∈,所以cos x∈[0,1],因此当cos x=时,f(x)max=1.
    答案:1

    [山东省学习指导意见]
    1.任意角的三角函数
    (1)了解任意角的概念和弧度制,能进行弧度与角度的互化.
    (2)理解任意角三角函数(正弦、余弦和正切)的定义.
    (3)会用诱导公式,理解同角三角函数的基本关系式.
    2.三角函数的图象和性质
    (1)能画出y=sin x、y=cos x、y=tan x的图象.
    (2)理解正弦函数、余弦函数、正切函数的性质(如单调性、最大和最小值、图象与x轴交点等),了解三角函数的周期性.
    (3)了解y=Asin(ωx+φ)的实际意义;能画出y=Asin(ωx+φ)的图象.知道参数A、ω、φ对函数图象变化的影响.
    (4)会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型.


       三角函数的定义、诱导公式及基本关系
    [考法全练]
    1.角θ的顶点为坐标原点,始边为x轴的正半轴,终边经过点P(4,y),且sin θ=-,则tan θ=(  )
    A.-        B.
    C.- D.
    解析:选C.因为角θ的终边经过点P(4,y),sin θ=-<0,所以角θ为第四象限角,所以cos θ==,所以tan θ==-,故选C.
    2.若sin=-,且α∈,则tan(π-α)=(  )
    A. B.
    C.- D.-
    解析:选A.由sin=cos α=-,且α∈,
    得sin α==,
    所以tan(π-α)=-tan α
    =-=-=.
    3.已知θ∈,则 =____________.
    解析:因为 ===|sin θ-cos θ|,又θ∈,所以原式=sin θ-cos θ.
    答案:sin θ-cos θ
    4.若tan α=cos α,则+cos4α=____________.
    解析:tan α=cos α⇒=cos α⇒sin α=cos2α,故+cos4α=+cos4α=sin α++cos4α=sin α++sin2α=sin2α+sin α+1=sin2α+cos2α+1=1+1=2.
    答案:2
    5.(2019·福建模拟改编)在平面直角坐标系xOy中,角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边交单位圆O于点P(a,b),且a+b=,则ab=________,cos=________.
    解析:由题知sin α=b,cos α=a.因为a+b=,所以sin α+cos α=.两边平方可得sin2 α+cos2 α+2sin αcos α=,所以1+2sin αcos α=,所以2sin αcos α=.所以sin αcos α=ab=,所以cos=-sin 2α=-2sin αcos α=-.
    答案: -

    (1)三角函数的定义
    若角α的终边过点P(x,y),则sin α=,cos α=,
    tan α=(其中r=).
    (2)利用诱导公式进行化简求值的步骤
    利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.特别注意函数名称和符号的确定.
    [注意] “奇变偶不变,符号看象限”.
    (3)基本关系
    sin2x+cos2x=1,tan x=.
    [技能] 利用同角三角函数的基本关系求函数值时,要注意确定符号.
     

       三角函数的图象与解析式
    [典型例题]
    命题角度一 由“图”定“式”
    (一题多解)(2019·成都市第二次诊断性检测)将函数f(x)的图象上所有点向右平移个单位长度,得到函数g(x)的图象.若函数g(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则函数f(x)的解析式为(  )

    A.f(x)=sin
    B.f(x)=-cos
    C.f(x)=cos
    D.f(x)=sin
    【解析】 法一:根据函数g(x)的图象可知A=1,T=+=,T=π=,ω=2,所以g(x)=sin(2x+φ),所以g=sin=0,所以+φ=π+kπ,k∈Z,φ=+kπ,k∈Z,又因为|φ|<,所以φ=,所以g(x)=sin,将g(x)=sin的图象向左平移个单位长度后,即可得到函数f(x)的图象,所以函数f(x)的解析式为f(x)=g=sin=sin=cos.
    法二:根据g(x)的图象可知g=g=1,因为f(x)的图象向右平移个单位长度后,即可得到g(x)的图象,
    所以f=f=1,对于A,f=sin≠1,不符合题意;对于B,f=-cos 0=-1≠1,不符合题意;对于C,f=cos 0=1,符合题意;对于D,f=sin≠1,不符合题意.
    【答案】 C

    由“图”定“式”找“对应”
    由三角函数的图象求解析式y=Asin(ωx+φ)+B(A>0,ω>0)中参数的值,关键是把握函数图象的特征与参数之间的对应关系,其基本依据就是“五点法”作图.
    (1)最值定A,B:根据给定的函数图象确定最值,设最大值为M,最小值为m,则M=A+B,m=-A+B,解得B=,A=.
    (2)T定ω:由周期的求解公式T=,可得ω=.记住三角函数的周期T的相关结论:
    ①两个相邻对称中心之间的距离等于.
    ②两条相邻对称轴之间的距离等于.
    ③对称中心与相邻对称轴的距离等于.
    (3)点坐标定φ:一般运用代入法求解φ值,在求解过程中,可以代入图象上的一个已知点(此时A,ω,B已知),也可代入图象与直线y=B的交点(此时要注意交点在上升区间上还是在下降区间上).注意在确定φ值时,往往以寻找“五点法”中的某一个点为突破口,即“峰点”“谷点”与三个“中心点”,利用“中心点”时要注意其所在单调区间的单调性,避免产生增解. 
    命题角度二 图象变换
    (1)(一题多解)(2019·广州市调研测试)将函数y=f(x)的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍得到y=sin的图象,则f(x)=(  )
    A.sin    B.sin
    C.sin D.sin
    (2)若ω>0,函数y=cos的图象向右平移个单位长度后与函数y=sin ωx的图象重合,则ω的最小值为(  )
    A. B.
    C. D.
    【解析】 (1)法一:由题设知,f=sin.设x+=t,则x=2t-,所以f(t)=sin=sin.故f(x)=sin.故选B.
    法二:由题设知,先将函数y=sin的图象上所有点的横坐标缩短到原来的,再将所得图象向右平移个单位长度即得函数f(x)的图象,故f(x)=sin=sin.故选B.
    (2)函数y=cos的图象向右平移个单位长度后,所得函数图象对应的解析式为y=cos=cos,其图象与函数y=sin ωx=cos,k∈Z的图象重合,所以-+2kπ=-+,k∈Z,所以ω=-6k+,k∈Z,又ω>0,所以ω的最小值为,故选B.
    【答案】 (1)B (2)B

    三角函数图象的变换规律
    由函数y=sin x的图象变换得到y=Asin(ωx+φ)(A>0,ω>0)的图象的两种方法.

     (1)函数图象的平移法则是“左加右减、上加下减”,但是左右平移变换只是针对x作的变换.
    (2)函数f(x)=sin(ωx+φ)的图象向左(右)平移k个单位长度后,其图象对应的函数解析式为g(x)=sin[ω(x±k)+φ],而不是g(x)=sin(ωx±k+φ). 
    命题角度三 三角函数图象的应用
    (1)(多选)(2019·湖南省湘东六校联考)已知函数f(x)=|sin x|·|cos x|,则下列说法正确的是(  )
    A.f(x)的图象关于直线x=对称
    B.f(x)的最小正周期为
    C.(π,0)是f(x)图象的一个对称中心
    D.f(x)在区间上单调递减
    (2)已知函数f(x)=4sincos x+,若函数g(x)=f(x)-m在上有两个不同的零点,则实数m的取值范围为____________.
    【解析】 (1)f(x)=|sin x|·|cos x|=|sin 2x|,作出函数f(x)的图象如图所示,由图知函数f(x)的图象关于直线x=对称,f(x)的最小正周期为,f(x)在区间上单调递减,f(x)的图象无对称中心,故C不正确.

    (2)方程g(x)=0同解于f(x)=m,在平面直角坐标系中画出函数f(x)=2sin在上的图象,如图所示,由图象可知,当且仅当m∈[,2)时,方程f(x)=m有两个不同的解.

    【答案】 (1)ABD (2)[,2)

    巧用图象解决三角方程或不等式问题
    解决与三角函数相关的方程以及不等式问题,最基本的方法就是作出对应函数的图象,然后结合函数的图象的特征确定方程的解或不等式的解集.准确作出对应函数的图象是解决问题的关键,尤其是作出函数在指定区间上的图象,需要准确把握函数图象的端点值以及最值. 
    [对点训练]
    1.(2019·高考天津卷)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,且f(x)的最小正周期为π,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g=,则f=(  )
    A.-2 B.-
    C. D.2
    解析:选C.由f(x)为奇函数可得φ=kπ(k∈Z),又|φ|<π,所以φ=0,所以g(x)=Asinωx.由g(x)的最小正周期为2π,可得=2π,故ω=2,g(x)=Asin x.g=Asin =,所以A=2,所以f(x)=2sin 2x,故f=2sin =.
    2.(2019·湖南省五市十校联考)函数f(x)=Asin(ωx+φ)(A>0,ω>0,0≤φ<2π)的部分图象如图所示,则f(2 019)的值为________.

    解析:由题图易知,函数f(x)的最小正周期T=4×=6,所以ω==,所以f(x)=Asin,将(0,1)代入,可得Asin φ=1,所以f(2 019)=f(6×336+3)=f(3)=Asin=-Asin φ=-1.
    答案:-1

       三角函数的性质
    [典型例题]
    (1)(一题多解)(2019·江西八所重点中学联考)已知函数f(x)=2sin(ω>0)和g(x)=3cos(2x+φ)+1的图象的对称轴完全相同,则下列关于g(x)的说法正确的是(  )
    A.最大值为3
    B.在上单调递减
    C.是g(x)图象的一个对称中心
    D.直线x=-是g(x)图象的一条对称轴
    (2)(一题多解)(2019·洛阳尖子生第二次联考)已知函数f(x)=sin(ω>0)在区间上单调递增,则ω的取值范围为(  )
    A.        B.
    C. D.
    【解析】 (1)通解:因为函数f(x)=2sin(ω>0)和函数g(x)=3cos(2x+φ)+1(|φ|<)的图象的对称轴完全相同,所以两个函数的周期一定相同,所以ω=2,所以f(x)=2sin,由2x-=kπ+(k∈Z),得函数f(x)图象的对称轴方程为x=+(k∈Z),所以cos=±1(k∈Z),所以对任意k∈Z均存在m∈Z,使得kπ++φ=mπ.因为|φ|<,所以<+φ<,所以+φ=π,所以φ=,所以g(x)=3cos+1,所以g(x)的最大值为4,所以A错误.令2nπ≤2x+≤2nπ+π,n∈Z,得nπ-≤x≤nπ+,n∈Z,所以B错误.因为g=3cos+1=1,所以是g(x)图象的一个对称中心,所以C错误.因为g=3cos+1=4,所以直线x=-为函数g(x)图象的一条对称轴,所以D正确.故选D.
    优解:因为函数f(x)=2sin(ωx-)(ω>0)和函数g(x)=3cos(2x+φ)+1的图象的对称轴完全相同,所以两个函数的周期一定相同,所以ω=2,所以f(x)=2sin,所以f(-)=2sin=-2,又-2为函数f(x)的最小值,所以直线x=-为函数f(x)图象的一条对称轴,所以直线x=-为函数g(x)图象的一条对称轴,故选D.
    (2)法一:由题意,得,则,又ω>0,所以,k∈Z,所以k=0,则0<ω≤,故选B.
    法二:取ω=1,则f(x)=sin,令+2kπ≤x+≤+2kπ,k∈Z,得+2kπ≤x≤+2kπ,k∈Z,当k=1时,函数f(x)在区间上单调递减,与函数f(x)在区间上单调递增矛盾,故ω≠1,结合四个选项知选B.
    【答案】 (1)D (2)B

    三角函数性质的应用要注意以下两点:首先要将函数化为y=Asin(ωx+φ)(ω>0)的形式,再对比y=sin x的性质,即把ωx+φ看成一个整体处理,但是一定要注意ω>0,否则易出错;其次一定要结合图象进行分析. 
    [对点训练]
    1.(一题多解)(2019·武昌区调研考试)已知函数f(x)=sin ωx-cos ωx(ω>0)的最小正周期为2π,则f(x)的单调递增区间是(  )
    A.(k∈Z)
    B.(k∈Z)
    C.(k∈Z)
    D.(k∈Z)
    解析:选B.法一:因为f(x)=2=2sin ,f(x)的最小正周期为2π,所以ω==1,所以f(x)=2sin,
    由2kπ-≤x-≤2kπ+(k∈Z),得2kπ-≤x≤2kπ+(k∈Z).
    所以f(x)的单调递增区间为[2kπ-,2kπ+](k∈Z).故选B.
    法二:因为f(x)=2
    =-2cos,f(x)的最小正周期为2π,所以ω==1,所以f(x)=-2cos,
    由2kπ≤x+≤2kπ+π(k∈Z),得2kπ-≤x≤2kπ+(k∈Z),
    所以f(x)的单调递增区间为(k∈Z),故选B.
    2.(2019·南昌模拟)已知函数f(x)=2sin(ωx+φ)(0<ω<1,|φ|<)的图象经过点(0,1),且关于直线x=对称,则下列结论正确的是(  )
    A.f(x)在上是减函数
    B.若x=x0是f(x)图象的对称轴,则一定有f′(x0)≠0
    C.f(x)≥1的解集是,k∈Z
    D.f(x)图象的一个对称中心是
    解析:选D.由f(x)=2sin(ωx+φ)的图象经过点(0,1),得sin φ=,又|φ|<,所以φ=,则f(x)=2sin.因为f(x)的图象关于直线x=对称,所以存在m∈Z使得ω+=mπ+,得ω=+(m∈Z),又0<ω<1,所以ω=,则f(x)=2sin.令2nπ+≤x+≤2nπ+,n∈Z,得4nπ+≤x≤4nπ+,n∈Z,故A错误;若x=x0是f(x)图象的对称轴,则f(x)在x=x0处取得极值,所以一定有f′(x0)=0,故B错误;由f(x)≥1得4kπ≤x≤4kπ+,k∈Z,故C错误;因为f=0,所以是其图象的一个对称中心,故D正确.选D.
    3.(多选)已知函数f(x)=,则下列说法错误的是(  )
    A.f(x)的周期是
    B.f(x)的值域是{y|y∈R,且y≠0}
    C.直线x=是函数f(x)图象的一条对称轴
    D.f(x)的单调递减区间是,k∈Z
    解析:选ABC.函数f(x)=的周期T==2π,故A错误;函数f(x)=的值域为[0,+∞),故B错误;当x=时,x-=≠,k∈Z,即直线x=不是f(x)图象的对称轴,故C错误;令kπ- 4.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象上相邻两个最高点的距离为6,P是该函数图象上的一个最低点,则该函数图象的一个对称中心是(  )
    A.(1,0) B.(2,0)
    C.(3,0) D.(4,0)
    解析:选C.由题意可得函数f(x)的最小正周期T=6,则ω===.
    结合点P的坐标可得A=2,且×+φ=2kπ-(k∈Z),
    得φ=2kπ-π(k∈Z),所以f(x)=2sin=-2sinx(k∈Z).
    令x=k′π(k′∈Z),得x=3k′(k′∈Z),
    取k′=1可得该函数图象的一个对称中心是(3,0).

       三角函数的值域与最值问题
    [典型例题]
    (1)已知将函数f(x)=2sincos x+的图象向左平移个单位长度后得到函数y=g(x)的图象,则g(x)在上的值域为(  )
    A.      B.
    C. D.
    (2)(2019·高考全国卷Ⅰ)函数f(x)=sin-3cos x的最小值为________.
    【解析】 (1)因为f(x)=2cos x+=sin xcos x-cos2x+=sin 2x-cos 2x=sin,所以g(x)=sin=sin.因为-≤x≤,所以0≤2x+≤,则-≤sin≤1,故-≤g(x)≤1.故选C.
    (2)因为f(x)=sin-3cos x
    =-cos 2x-3cos x
    =-2cos2x-3cos x+1,
    令t=cos x,则t∈[-1,1],所以f(x)=-2t2-3t+1.
    又函数f(x)图象的对称轴t=-∈[-1,1],且开口向下,
    所以当t=1时,f(x)有最小值-4.
    【答案】 (1)C (2)-4

    有关三角函数的值域与最值问题的解题策略
    (1)形如y=asin x+bcos x+c的三角函数,要根据三角恒等变换把函数化为y=Asin(ωx+φ)+k的形式,再借助三角函数的图象与性质确定值域与最值. 
    (2)形如y=asin2x+bsin x+c的三角函数,转化为二次函数去求解.
    (3)形如y=asin xcos x+b(sin x±cos x)+c的三角函数,可先设t=sin x±cos x,再转化为关于t的二次函数去求解.
    [对点训练]
    1.(2019·济南市模拟考试)若函数f(x)=sin(ω>0)在[0,π]上的值域为,则ω的最小值为(  )
    A. B.
    C. D.
    解析:选A.因为0≤x≤π,ω>0,所以-≤ωx-≤ωπ-.又f(x)的值域为,所以ωπ-≥,所以ω≥,故选A.
    2.函数f(x)=2sin2+2sin·cos在区间上的最小值为________.
    解析:由题意得,f(x)=1-cos+sin=1+sin 2x+cos 2x=1+sin.
    因为≤x≤,
    所以≤2x+≤,
    所以-1≤sin≤-,
    所以1-≤1+sin≤0,所以函数f(x)在上的最小值为1-.
    答案:1-
    一、选择题
    1.(2019·高考全国卷Ⅱ)若x1=,x2=是函数f(x)=sin ωx(ω>0)两个相邻的极值点,则ω=(  )
    A.2 B.
    C.1 D.
    解析:选A.依题意得函数f(x)的最小正周期T==2×(-)=π,解得ω=2,选A.
    2.(2019·昆明市诊断测试)函数y=sin图象的一条对称轴的方程为(  )
    A.x= B.x=
    C.x= D.x=
    解析:选D.由题意,令2x-=+kπ(k∈Z),得对称轴方程为x=+(k∈Z),当k=0时,函数y=sin图象的一条对称轴的方程为x=.故选D.
    3.(2019·广东省七校联考)函数f(x)=tan的单调递增区间是(  )
    A.,k∈Z
    B.,k∈Z
    C.,k∈Z
    D.,k∈Z
    解析:选B.由-+kπ<-<+kπ,k∈Z,得2kπ- 4.(2019·济南市学习质量评估)为了得到函数y=2cos 2x的图象,可以将函数y=cos 2x-sin 2x的图象(  )
    A.向左平移个单位长度
    B.向右平移个单位长度
    C.向左平移个单位长度
    D.向右平移个单位长度
    解析:选B.因为y=cos 2x-sin 2x=2cos=2cos,所以要得到函数y=2cos 2x的图象,可以将函数y=cos 2x-sin 2x的图象向右平移个单位长度,故选B.
    5.(2019·石家庄市模拟(一))已知函数f(x)=2cos(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,点A(0,),B,则函数f(x)图象的一条对称轴为(  )

    A.x=- B.x=-
    C.x= D.x=
    解析:选D.因为函数f(x)=2cos(ωx+φ)的图象过点A(0,),所以2cos φ=,即cos φ=,所以φ=2kπ±(k∈Z).因为|φ|<,所以φ=±,由函数f(x)的图象知<0,又ω>0,所以φ<0,所以φ=-,所以f(x)=2cos(ωx-).因为f(x)=2cos(ωx-)的图象过点B,所以cos=0,所以=mπ+(m∈Z),所以ω=6m+4(m∈Z).因为ω>0,>,所以0<ω<6,所以ω=4,所以f(x)=2cos.因为x=时,f(x)=2,所以x=为函数f(x)图象的一条对称轴,故选D.
    6.(一题多解)(2019·武汉市调研测试)已知函数f(x)=2sin在区间上单调递增,则ω的最大值为(  )
    A. B.1
    C.2 D.4
    解析:选C.法一:因为x∈,所以ωx+∈,因为f(x)=2sin在上单调递增,所以+≤,所以ω≤2,即ω的最大值为2,故选C.
    法二:逐个选项代入函数f(x)进行验证,选项D不满足条件,选项A、B、C满足条件f(x)在上单调递增,所以ω的最大值为2,故选C.
    7.(2019·福州市第一学期抽测)已知函数f(x)=sin 2x+2sin2x-1在[0,m]上单调递增,则m的最大值是(  )
    A. B.
    C. D.π
    解析:选C.由题意,得f(x)=sin 2x-cos 2x=sin,由-+2kπ≤2x-≤+2kπ(k∈Z),解得-+kπ≤x≤+kπ(k∈Z),k=0时,-≤x≤,即函数f(x)在上单调递增.因为函数f(x)在[0,m]上单调递增,所以0 8.(2019·广东六校第一次联考)已知A是函数f(x)=sin+cos的最大值,若存在实数x1,x2使得对任意实数x,总有f(x1)≤f(x)≤f(x2)成立,则A|x1-x2|的最小值为(  )
    A. B.
    C. D.
    解析:选B.f(x)=sin+cos=sin 2 018x+cos 2 018x+cos 2 018x+sin 2 018x=sin 2 018x+cos 2 018x=2sin,故A=f(x)max=2,f(x)的最小正周期T==.又存在实数x1,x2使得对任意实数x,总有f(x1)≤f(x)≤f(x2)成立,所以f(x2)=f(x)max,f(x1)=f(x)min,故A|x1-x2|的最小值为A×T=,故选B.
    9.(多选)已知函数f(x)=sin 2x-cos 2x,则下列判断错误的是(  )
    A.关于直线x=对称
    B.关于直线x=对称
    C.关于点对称
    D.关于点对称
    解析:选BCD.f(x)=sin 2x-cos 2x=sin,则f=sin=sin =1,即函数关于直线x=对称,故A正确,D错误;f=sin=sin=,则函数不关于直线x=对称,也不关于点对称,故B,C错误.
    10.(多选)已知函数f(x)=sin4x-cos4x,则下列说法正确的是(  )
    A.f(x)的最小正周期为π
    B.f(x)的最大值为2
    C.f(x)的图象关于y轴对称
    D.f(x)在区间上单调递增
    解析:选ACD.因为f(x)=sin4x-cos4x=sin2x-cos2x=-cos 2x,所以函数f(x)的最小正周期T=π,f(x)的最大值为1.
    因为f(-x)=-cos(-2x)=-cos 2x=f(x),所以f(x)为偶函数,其图象关于y轴对称,因为y=cos 2x在上单调递减,所以f(x)=-cos 2x在上单调递增,故选ACD.
    11.(多选)已知函数f(x)=2sin(2x+φ)(0<φ<π),若将函数f(x)的图象向右平移个单位长度后,所得图象关于y轴对称,则下列结论中正确的是(  )
    A.φ=
    B.是f(x)图象的一个对称中心
    C.f(φ)=-2
    D.x=-是f(x)图象的一条对称轴
    解析:选ABD.由题意得,平移后的函数g(x)=f=2sin的图象关于y轴对称,则-+φ=+kπ,k∈Z,因为0<φ<π,所以φ=,故A正确;f(x)=2sin,由2x+=kπ,k∈Z,得对称中心的横坐标为-+,k∈Z,故是f(x)图象的一个对称中心,故B正确;f(φ)=2sin=2sin =2,故C不正确;由2x+=+kπ,k∈Z,得x=-+,k∈Z,所以x=-是f(x)图象的一条对称轴,故D正确.
    12.(多选)将函数f(x)的图象向右平移个单位长度,再将所得函数图象上的所有点的横坐标缩短到原来的,得到函数g(x)=Asin(ωx+φ)的图象.已知函数g(x)的部分图象如图所示,则下列关于函数f(x)的说法正确的是(  )

    A.f(x)的最小正周期为π,最大值为2
    B.f(x)的图象关于点中心对称
    C.f(x)的图象关于直线x=对称
    D.f(x)在区间上单调递减
    解析:选ACD.由图可知,A=2,T=4×=,所以ω==3.
    又由g=2可得φ=-+2kπ(k∈Z),且|φ|<,所以φ=-.
    所以g(x)=2sin,
    所以f(x)=2sin.
    所以f(x)的最小正周期为π,最大值为2,选项A正确.
    对于选项B,令2x+=k′π(k′∈Z),得x=-(k′∈Z),所以函数f(x)图象的对称中心为(k′∈Z),由-=,
    得k′=,不符合k′∈Z,B错误.
    对于选项C,令2x+=+kπ(k∈Z),得x=+(k∈Z),所以函数f(x)图象的对称轴为直线x=+(k∈Z),当k=0时,x=,故C正确.
    当x∈[,]时,2x+∈,所以f(x)在区间上单调递减,所以选项D正确.故选ACD.
    二、填空题
    13.已知函数f(x)=4cos(ωx+φ)(ω>0,0<φ<π)为奇函数,A(a,0),B(b,0)是其图象上两点,若|a-b|的最小值是1,则f=________.
    解析:因为函数f(x)=4cos(ωx+φ)(ω>0,0<φ<π)为奇函数,所以cos φ=0(0<φ<π),所以φ=,所以f(x)=-4sin ωx,又A(a,0),B(b,0)是其图象上两点,且|a-b|的最小值是1,所以函数f(x)的最小正周期为2,所以ω=π,所以f(x)=-4sin πx,所以f=-4sin =-2.
    答案:-2
    14.(2019·长春市质量监测(二))定义在[0,π]上的函数y=sin(ω>0)有零点,且值域M⊆,则ω的取值范围是________.
    解析:由0≤x≤π,得-≤ωx-≤ωπ-,当x=0时,y=-.因为函数y=sin在[0,π]上有零点,所以0≤ωπ-,ω≥.因为值域M⊆,所以ωπ-≤π+,ω≤,从而≤ω≤.
    答案:
    15.(2019·蓉城名校第一次联考)已知关于x的方程2sin2x-sin 2x+m-1=0在上有两个不同的实数根,则m的取值范围是________.
    解析:因为2sin2x-sin 2x+m-1=0,
    所以1-cos 2x-sin 2x+m-1=0,
    所以cos 2x+sin 2x-m=0,
    所以2sin=m,即sin=.
    方程2sin2x-sin 2x+m-1=0在上有两个不同的实数根,即y=sin,x∈的图象与y=的图象有2个不同的交点.作出y=sin,x∈及y=的图象如图所示,则-1<<-,

    即-2 答案:(-2,-1)
    16.(2019·江西赣州摸底改编)已知函数f(x)=sin+,ω>0,x∈R,且f(α)=-,f(β)=.若|α-β|的最小值为,则f=________,函数f(x)的单调递增区间为________.
    解析:函数f(x)=sin+,ω>0,x∈R,由f(α)=-,f(β)=,且|α-β|的最小值为,得=,即T=3π=,所以ω=.所以f(x)=sin+.则f=sin +=.由-+2kπ≤x-≤+2kπ,k∈Z,得-+3kπ≤x≤π+3kπ,k∈Z,即函数f(x)的单调递增区间为,k∈Z.
    答案: ,k∈Z

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2020新课标高考数学二轮讲义:第二部分专题一第1讲 三角函数的图象与性质
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map