2020年苏科版八年级数学上册 期中复习试卷九(含答案)
展开2020年苏科版八年级数学上册 期中复习试卷九
一、选择题(本大题共6小题,每小题2分,共12分)
1.在下面的四个京剧脸谱中,不是轴对称图形的是( ▲ )
2.下列长度的三条线段能组成直角三角形的是( ▲ )
A.1,2,3 B.2,3,4 C.3,4,5 D.5,6,7
3.等腰三角形两边长分别为2和4,则这个等腰三角形的周长为( ▲ )
A.6 B.8 C.10 D.8或10
4.如图,在数轴上表示实数+1的点可能是( ▲ )
A.P B.Q C.R D.S
5.如图是跷跷板的示意图,支柱OC与地面垂直,点O是AB的中点,AB绕着点O上下转动.当A端落地时,∠OAC=20°,跷跷板上下可转动的最大角度(即∠A′OA)是( ▲ )
A.20° B.40° C.60° D.80°
6.如图,在四边形ABCD中,AB=AC=BD,AC与BD相交于H,且AC⊥BD.
①AB∥CD;②△ABD≌△BAC;③AB2+CD2=AD2+CB2;④∠ACB+∠BDA=135°.其中真命题的个数是( ▲ )
A.1 B.2 C.3 D.4
二、填空题
7.的相反数是 ▲ .
8.一个罐头的质量约为2.026 kg,用四舍五入法将2.026 kg精确到0.01 kg可得近似值 ▲ kg.
9.如图,已知点A,D,C,F在同一条直线上,AB=DE,∠B=∠E,要使△ABC≌△DEF,还需要添加一个条件是 ▲ .
10.如图,在Rt△ABC中,CD是斜边AB上的中线,若AB=2,则CD= ▲ .
11.如图,在△ABC中,AB=AC,∠B=66°,D,E分别为AB,BC上一点,AF∥DE,若∠BDE=30°,
则∠FAC的度数为 ▲ .
12.如图,一块形如“Z”字形的铁皮,每个角都是直角,且AB=BC=EF=GF=1,CD=DE=GH=AH=3,现将铁片裁剪并拼接成一个和它等面积的正方形,则正方形的边长是 ▲ .
13.如图,△ABC,△ADE均是等腰直角三角形,BC与DE相交于F点,若AC=AE=1,则四边形AEFC的周长为 ▲
14.如图,△ABC是边长为6的等边三角形,D是BC上一点,BD=2,DE⊥BC交AB于点E,则AE= ▲ .
15.如图,在△ABC中,AB=4,AC=3,BC=5,AD是△ABC的角平分线,DE⊥AB于点E,则DE长是 ▲ .
16.如图,在△ABC中,∠C=90°,∠A=34°,D,E分别为AB,AC上一点,将△BCD,△ADE沿CD,DE翻折,点A,B恰好重合于点P处,则∠ACP= ▲ .
三、解答题(本大题共10题,共68分)
17.(6分)计算
(1)(-2)2+-; (2)+(π-3)0-.
18.(6分)求下列各式中的x
(1)(x+2)2=4; (2)1+(x-1)3=-7.
19.(6分)请在下图中画出三个以为腰的等腰.
(要求:1.锐角三角形,直角三角形,钝角三角形各画一个;2.点在格点上.)
20.(6分)如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证BC=AD.
21.(6分)如图,在△ABC中,边AB,AC的垂直平分线相交于点P.求证PB=PC.
22.(6分)如图,已知点P为△ABC边BC上一点.请用直尺和圆规作一条直线EF,使得A关于EF的对称点为P.(保留作图痕迹,不写作法)
23.(7分)如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE沿AE折叠,使点B落在长方形内点F处,且DF=6,求BE的长.
24.(8分)如图,在△ABC中,AB=AC,∠A=48°,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE,求∠EDF的度数.
25.(8分)阅读理解:求的近似值.
解:设=10+x,其中0<x<1,则107=(10+x)2,即107=100+20x+x2.
因为0<x<1,所以0<x2<1,所以107≈100+20x,解之得x≈0.35,即的近似值为10.35.
理解应用:利用上面的方法求的近似值(结果精确到0.01).
26.(9分)如图,在四边形ABCD中,AB∥CD,∠D=90°,若AD=3,AB=4,CD=8,点P为线段CD上的一动点,若△ABP为等腰三角形,求DP的长.
参考答案
一、选择题(每小题2分,共计12分)
题号 | 1 | 2 | 3 | 4 | 5 | 6 |
答案 | D | C | C | B | B | B |
二、填空题(每小题2分,共计20分)
7.-. | 8.2.23. | 9.BC=EF(答案不惟一). | 10.1. | 11.18. |
12.. | 13.2. | 14.2. | 15.. | 16.22. |
三、解答题(本大题共10小题,共计68分)
17.(本题6分)
解:(1)(-2)2+-
=4+4-2
=6·································································3分
(2)+(π-3)0-
= +1-(-1)
=-.························································6分
18.(本题6分)
解:(1)x-2=±2····················································1分
x=±2+2
x=0,x2=4.·························································3分
(2)(x-1)3=-8···················································4分
x-1=-2·····················································5分
x=-1.····························································6分
19.(本题6分)图略.
20.(本题6分)
证明:∵ AC⊥BC,BD⊥AD,
∴ ∠C=∠D=90°.
在Rt△ABC和Rt△BAD中,
∴ Rt△ABC≌Rt△BAD(HL).
∴ BC=AD.·························································6分
21.(本题6分)
证明:∵ 边AB,AC的垂直平分线相交于点P,
∴ PA=PB,PA=PC.
∴ PB=PC.·························································6分
22.(本题6分)图略.
23.(本题7分)
解:∵ 将△ABE沿AE折叠,使点B落在长方形内点F处,
∴ ∠AFE=∠B=90°,AB=AF=8,BE=FE.
在△ADF中,
∵ AF2+DF2
=62+82
=100
=102=AD2,
∴ △ADF是直角三角形,∠AFD=90°.····································3分
∴ D,F,E在一条直线上.·············································4分
设BE=x,则EF=x,DE=6+x,EC=10-x,
在Rt△DCE中,∠C=90°,
∴ CE2+CD2=DE2,
即 (10-x) 2+82=(6+x) 2.
∴ x=4.
∴ BE=4.··························································7分
24.(本题8分)
(1)证明:∵ AB=AC,∠A=48°,
∴ ∠B=∠C=(180°-48°)÷2=66°.······································2分
在△DBE和△ECF中,
∴ △DBE≌△ECF(SAS).···············································4分
∴ ∠FEC=∠BDE,
∴ ∠DEF=180°-∠BED-∠FEC
=180°-∠DEB-∠EDB=∠B=66°.·········································6分
∵ △DBE≌△ECF(SAS),
∴ DE=FE.∴△DEF是等腰三角形.
∴ ∠EDF =(180°-66°)÷2=57°.·······································8分
25.(本题8分)
解:设=10-x,其中0<x<1,则97=(10-x)2,即97=100-20x+x2.
因为0<x<1,所以0<x2<1,
所以97≈100-20x,解之得x≈0.15,即的近似值为9.85.······················8分
(设=9+x,求出的近似值为9.89也给满分.)
26.(本题9分)
解:①AB=AP时,DP1==;·················································2分
②BP=AP时,DP2=AB=×4=2;···············································4分
③BA=BP时,过点B作BH⊥CD于H,则BH=AD=3,
由勾股定理得,FP==,
DP3=4-,或者DP4=4+.
综上所述,DP的值为,2,4-,或者4+.····································9分

