还剩12页未读,
继续阅读
2019届二轮复习第九章第1节 直线的方程学案(全国通用)
展开
第1节 直线的方程
最新考纲 1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.
知 识 梳 理
1.直线的倾斜角
(1)定义:当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角;
(2)规定:当直线l与x轴平行或重合时,规定它的倾斜角为0;
(3)范围:直线的倾斜角α的取值范围是[0,π).
2.直线的斜率
(1)定义:当直线l的倾斜角α≠时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k表示,即k=tan α;
(2)斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=.
3.直线方程的五种形式
名称
几何条件
方程
适用条件
斜截式
纵截距、斜率
y=kx+b
与x轴不垂直的直线
点斜式
过一点、斜率
y-y0=k(x-x0)
两点式
过两点
=
与两坐标轴均不垂直的直线
截距式
纵、横截距
+=1
不过原点且与两坐标轴均不垂直的直线
一般式
Ax+By+C=0(A2+B2≠0)
所有直线
[常用结论与微点提醒]
1.直线的倾斜角α和斜率k之间的对应关系:
α
0°
0°<α<90°
90°
90°<α<180°
k
0
k>0
不存在
k<0
2.求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.
3.截距为一个实数,既可以为正数,也可以为负数,还可以为0,这是解题时容易忽略的一点.
诊 断 自 测
1.思考辨析(在括号内打“√”或“×”)
(1)直线的倾斜角越大,其斜率就越大.( )
(2)直线的斜率为tan α,则其倾斜角为α.( )
(3)斜率相等的两直线的倾斜角不一定相等.( )
(4)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.( )
解析 (1)当直线的倾斜角α1=135°,α2=45°时,α1>α2,但其对应斜率k1=-1,k2=1,k1<k2.
(2)当直线斜率为tan(-45°)时,其倾斜角为135°.
(3)两直线的斜率相等,则其倾斜角一定相等.
答案 (1)× (2)× (3)× (4)√
2.(2018·衡水调研)直线x-y+1=0的倾斜角为( )
A.30° B.45° C.120° D.150°
解析 由题得,直线y=x+1的斜率为1,设其倾斜角为α,则tan α=1,又0°≤α<180°,故α=45°,故选B.
答案 B
3.如果A·C<0,且B·C<0,那么直线Ax+By+C=0不通过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
解析 由已知得直线Ax+By+C=0在x轴上的截距->0,在y轴上的截距
->0,故直线经过第一、二、四象限,不经过第三象限.
答案 C
4.(必修2P89B5改编)若过两点A(-m,6),B(1,3m)的直线的斜率为12,则直线的方程为 .
解析 由题意得=12,解得m=-2,∴A(2,6),
∴直线AB的方程为y-6=12(x-2),
整理得12x-y-18=0.
答案 12x-y-18=0
5.(必修2P100A9改编)过点P(2,3)且在两轴上截距相等的直线方程为 .
解析 当纵、横截距均为0时,直线方程为3x-2y=0;
当纵、横截距均不为0时,设直线方程为+=1,则+=1,解得a=5.所以直线方程为x+y-5=0.
答案 3x-2y=0或x+y-5=0
考点一 直线的倾斜角与斜率(典例迁移)
【例1】 (1)直线2xcos α-y-3=0的倾斜角的取值范围是( )
A. B.
C. D.
(2)(一题多解)直线l过点P(1,0),且与以A(2,1),B(0,)为端点的线段有公共点,则直线l斜率的取值范围为 .
解析 (1)直线2xcos α-y-3=0的斜率k=2cos α,
因为α∈,所以≤cos α≤,
因此k=2·cos α∈[1,].
设直线的倾斜角为θ,则有tan θ∈[1,].
又θ∈[0,π),所以θ∈,
即倾斜角的取值范围是.
(2)法一 设PA与PB的倾斜角分别为α,β,直线PA的斜率是kAP=1,直线PB的斜率是kBP=-,当直线l由PA变化到与y轴平行的位置PC时,它的倾斜角由α增至90°,斜率的取值范围为[1,+∞).
当直线l由PC变化到PB的位置时,它的倾斜角由90°增至β,斜率的变化范围是(-∞,-].
故斜率的取值范围是(-∞,-]∪[1,+∞).
法二 设直线l的斜率为k,则直线l的方程为
y=k(x-1),即kx-y-k=0.
∵A,B两点在直线l的两侧或其中一点在直线l上,
∴(2k-1-k)(--k)≤0,
即(k-1)(k+)≥0,解得k≥1或k≤-.
即直线l的斜率k的取值范围是
(-∞,-]∪[1,+∞).
答案 (1)B (2)(-∞,-]∪[1,+∞)
【迁移探究1】 若将例1(2)中P(1,0)改为P(-1,0),其他条件不变,求直线l斜率的取值范围.
解 设直线l的斜率为k,则直线l的方程为
y=k(x+1),即kx-y+k=0.
∵A,B两点在直线l的两侧或其中一点在直线l上,
∴(2k-1+k)(-+k)≤0,
即(3k-1)(k-)≤0,解得≤k≤.
即直线l的斜率的取值范围是.
【迁移探究2】 若将例1(2)中的B点坐标改为B(2,-1),其他条件不变,求直线l倾斜角的范围.
解 由例1(2)知直线l的方程kx-y-k=0,
∵A,B两点在直线l的两侧或其中一点在直线l上,
∴(2k-1-k)(2k+1-k)≤0,
即(k-1)(k+1)≤0,解得-1≤k≤1.
即直线l倾斜角的范围是∪.
规律方法 1.在分析直线的倾斜角和斜率的关系时,要根据正切函数k=tan α的单调性,当α取值在,即由0增大到时,k由0增大到+∞,当α取值在时,即由增大到π(α≠π)时,k由-∞增大到0.
2.斜率的两种求法
(1)定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k=tan α求斜率.
(2)公式法:若已知直线上两点A(x1,y1),B(x2,y2),一般根据斜率公式k=(x1≠x2)求斜率.
【训练1】 (2018·惠州一调)直线xsin α+y+2=0的倾斜角的取值范围是( )
A.[0,π) B.∪
C. D.∪
解析 设直线的倾斜角为θ,则有tan θ=-sin α.因为sin α∈[-1,1],所以-1≤tan θ≤1,又θ∈[0,π),所以0≤θ≤或≤θ<π,故选B.
答案 B
考点二 直线方程的求法
【例2】 根据所给条件求直线的方程:
(1)直线过点(-4,0),倾斜角的正弦值为;
(2)直线过点(-3,4),且在两坐标轴上的截距之和为12;
(3)直线过点(5,10),且到原点的距离为5.
解 (1)由题设知,该直线的斜率存在,故可采用点斜式.
设倾斜角为α,则sin α=(0≤α<π),
从而cos α=±,则k=tan α=±.
故所求直线方程为y=±(x+4).
即x+3y+4=0或x-3y+4=0.
(2)由题设知纵、横截距不为0,设直线方程为+=1,
又直线过点(-3,4),
从而+=1,解得a=-4或a=9.
故所求直线方程为4x-y+16=0或x+3y-9=0.
(3)当斜率不存在时,所求直线方程为x-5=0满足题意;
当斜率存在时,设其为k,
则所求直线方程为y-10=k(x-5),
即kx-y+10-5k=0.
由点线距离公式,得=5,解得k=.
故所求直线方程为3x-4y+25=0.
综上知,所求直线方程为x-5=0或3x-4y+25=0.
规律方法 1.在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.
2.对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).
【训练2】 求适合下列条件的直线方程:
(1)经过点P(4,1),且在两坐标轴上的截距相等;
(2)经过点A(-1,-3),倾斜角等于直线y=3x的倾斜角的2倍;
(3)经过点B(3,4),且与两坐标轴围成一个等腰直角三角形.
解 (1)设直线l在x,y轴上的截距均为a,
若a=0,即l过点(0,0)和(4,1),
∴l的方程为y=x,即x-4y=0.
若a≠0,则设l的方程为+=1,
∵l过点(4,1),∴+=1,
∴a=5,∴l的方程为x+y-5=0.
综上可知,直线l的方程为x-4y=0或x+y-5=0.
(2)由已知:设直线y=3x的倾斜角为α ,则所求直线的倾斜角为2α.
∵tan α=3,∴tan 2α==-.
又直线经过点A(-1,-3),
因此所求直线方程为y+3=-(x+1),
即3x+4y+15=0.
(3)由题意可知,所求直线的斜率为±1.
又过点(3,4),由点斜式得y-4=±(x-3).
所求直线的方程为x-y+1=0或x+y-7=0.
考点三 直线方程的综合应用
【例3】 已知直线l:kx-y+1+2k=0(k∈R).
(1)证明:直线l过定点;
(2)若直线不经过第四象限,求k的取值范围;
(3)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S(O为坐标原点),求S的最小值并求此时直线l的方程.
(1)证明 直线l的方程可化为k(x+2)+(1-y)=0,
令解得
∴无论k取何值,直线总经过定点(-2,1).
(2)解 由方程知,当k≠0时直线在x轴上的截距为-,在y轴上的截距为1+2k,要使直线不经过第四象限,则必须有解得k>0;
当k=0时,直线为y=1,符合题意,故k的取值范围是[0,+∞).
(3)解 由题意可知k≠0,再由l的方程,
得A,B(0,1+2k).
依题意得解得k>0.
∵S=·|OA|·|OB|=··|1+2k|
=·=
≥×(2×2+4)=4,
“=”成立的条件是k>0且4k=,即k=,
∴Smin=4,此时直线l的方程为x-2y+4=0.
规律方法 1.含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.
2.求解与直线方程有关的最值问题,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式求解最值.
【训练3】 (一题多解)已知直线l过点P(3,2),且与x轴、y轴的正半轴分别交于A,B两点,如图所示,求△ABO的面积的最小值及此时直线l的方程.
解 法一 设直线方程为+=1(a>0,b>0),
点P(3,2)代入得+=1≥2,得ab≥24,
从而S△ABO=ab≥12,
当且仅当=时等号成立,这时k=-=-,
从而所求直线方程为2x+3y-12=0.
法二 依题意知,直线l的斜率k存在且k<0.
则直线l的方程为y-2=k(x-3)(k<0),
且有A,B(0,2-3k),
∴S△ABO=(2-3k)
=≥
=×(12+12)=12.
当且仅当-9k=,即k=-时,等号成立,
即△ABO的面积的最小值为12.
故所求直线的方程为2x+3y-12=0.
基础巩固题组
(建议用时:25分钟)
一、选择题
1.直线x=的倾斜角等于( )
A.0 B. C. D.π
解析 由直线x=,知倾斜角为.
答案 C
2.如图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则( )
A.k1
B.k3
C.k3
D.k1
解析 直线l1的倾斜角α1是钝角,故k1<0,直线l2与l3的倾斜角α2与α3均为锐角且α2>α3,所以0
答案 D
3.(2018·安阳模拟)若平面内三点A(1,-a),B(2,a2),C(3,a3)共线,则a=( )
A.1±或0 B.或0
C. D.或0
解析 由题意知kAB=kAC,即=,即a(a2-2a-1)=0,解得a=0或a=1±.
答案 A
4.过点(2,1)且倾斜角比直线y=-x-1的倾斜角小的直线方程是( )
A.x=2 B.y=1 C.x=1 D.y=2
解析 ∵直线y=-x-1的斜率为-1,则倾斜角为,依题意,所求直线的倾斜角为-=,
∴斜率不存在,
∴过点(2,1)的所求直线方程为x=2.
答案 A
5.直线x+(a2+1)y+1=0的倾斜角的取值范围是( )
A. B.
C.∪ D.∪
解析 ∵直线的斜率k=-,∴-1≤k<0,则倾斜角的范围是.
答案 B
6.(2018·广州质检)若直线l与直线y=1,x=7分别交于点P,Q,且线段PQ的中点坐标为(1,-1),则直线l的斜率为( )
A. B.- C.- D.
解析 依题意,设点P(a,1),Q(7,b),则有解得
从而可知直线l的斜率为=-.
答案 B
7.(2018·西安调研)在同一平面直角坐标系中,直线l1:ax+y+b=0和直线l2:bx+y+a=0有可能是( )
解析 当a>0,b>0时,-a<0,-b<0.选项B符合.
答案 B
8.(2018·郑州一模)已知直线l的斜率为,在y轴上的截距为另一条直线x-2y-4=0的斜率的倒数,则直线l的方程为( )
A.y=x+2 B.y=x-2
C.y=x+ D.y=-x+2
解析 ∵直线x-2y-4=0的斜率为,∴直线l在y轴上的截距为2,∴直线l的方程为y=x+2,故选A.
答案 A
二、填空题
9.已知三角形的三个顶点A(-5,0),B(3,-3),C(0,2),则BC边上中线所在的直线方程为 .
解析 BC的中点坐标为,∴BC边上中线所在直线方程为=,即x+13y+5=0.
答案 x+13y+5=0
10.已知直线l过坐标原点,若直线l与线段2x+y=8(2≤x≤3)有公共点,则直线l的斜率的取值范围是 .
解析 设直线l与线段2x+y=8(2≤x≤3)的公共点为P(x,y).
则点P(x,y)在线段AB上移动,且A(2,4),B(3,2),
设直线l的斜率为k.
又kOA=2,kOB=.
如图所示,可知≤k≤2.
∴直线l的斜率的取值范围是.
答案
11.过点M(3,-4),且在两坐标轴上的截距相等的直线的方程为 .
解析 若直线过原点,则k=-,
所以y=-x,即4x+3y=0.
若直线不过原点,设直线方程为+=1,
即x+y=a.则a=3+(-4)=-1,
所以直线的方程为x+y+1=0.
答案 4x+3y=0或x+y+1=0
12.设直线l:(a-2)x+(a+1)y+6=0,则直线l恒过定点 .
解析 直线l的方程变形为a(x+y)-2x+y+6=0,
由解得
所以直线l恒过定点(2,-2).
答案 (2,-2)
能力提升题组
(建议用时:10分钟)
13.已知直线l过点(1,0),且倾斜角为直线l0:x-2y-2=0的倾斜角的2倍,则直线l的方程为( )
A.4x-3y-3=0 B.3x-4y-3=0
C.3x-4y-4=0 D.4x-3y-4=0
解析 由题意可设直线l0,l的倾斜角分别为α,2α,因为直线l0:x-2y-2=0的斜率为,则tan α=,
所以直线l的斜率k=tan 2α===,所以由点斜式可得直线l的方程为y-0=(x-1),
即4x-3y-4=0.
答案 D
14.(2018·成都诊断)设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处的切线倾斜角的取值范围为,则点P横坐标的取值范围为( )
A. B.[-1,0]
C.[0,1] D.
解析 由题意知y′=2x+2,设P(x0,y0),则k=2x0+2.因为曲线C在点P处的切线倾斜角的取值范围为,则0≤k≤1,即0≤2x0+2≤1,故-1≤x0≤-.
答案 A
15.(2018·福州模拟)若直线ax+by=ab(a>0,b>0)过点(1,1),则该直线在x轴、y轴上的截距之和的最小值为 .
解析 ∵直线ax+by=ab(a>0,b>0)过点(1,1),
∴a+b=ab,即+=1,
∴a+b=(a+b)
=2++≥2+2=4,
当且仅当a=b=2时上式等号成立.
∴直线在x轴、y轴上的截距之和的最小值为4.
答案 4
16.在平面直角坐标系xOy中,设A是半圆O:x2+y2=2(x≥0)上一点,直线OA的倾斜角为45°,过点A作x轴的垂线,垂足为H,过H作OA的平行线交半圆于点B,则直线AB的方程是 .
解析 直线OA的方程为y=x,代入半圆方程得A(1,1),
∴H(1,0),直线HB的方程为y=x-1,
代入半圆方程得B.
所以直线AB的方程为=,
即x+y--1=0.
答案 x+y--1=0
第1节 直线的方程
最新考纲 1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.
知 识 梳 理
1.直线的倾斜角
(1)定义:当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角;
(2)规定:当直线l与x轴平行或重合时,规定它的倾斜角为0;
(3)范围:直线的倾斜角α的取值范围是[0,π).
2.直线的斜率
(1)定义:当直线l的倾斜角α≠时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k表示,即k=tan α;
(2)斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=.
3.直线方程的五种形式
名称
几何条件
方程
适用条件
斜截式
纵截距、斜率
y=kx+b
与x轴不垂直的直线
点斜式
过一点、斜率
y-y0=k(x-x0)
两点式
过两点
=
与两坐标轴均不垂直的直线
截距式
纵、横截距
+=1
不过原点且与两坐标轴均不垂直的直线
一般式
Ax+By+C=0(A2+B2≠0)
所有直线
[常用结论与微点提醒]
1.直线的倾斜角α和斜率k之间的对应关系:
α
0°
0°<α<90°
90°
90°<α<180°
k
0
k>0
不存在
k<0
2.求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.
3.截距为一个实数,既可以为正数,也可以为负数,还可以为0,这是解题时容易忽略的一点.
诊 断 自 测
1.思考辨析(在括号内打“√”或“×”)
(1)直线的倾斜角越大,其斜率就越大.( )
(2)直线的斜率为tan α,则其倾斜角为α.( )
(3)斜率相等的两直线的倾斜角不一定相等.( )
(4)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.( )
解析 (1)当直线的倾斜角α1=135°,α2=45°时,α1>α2,但其对应斜率k1=-1,k2=1,k1<k2.
(2)当直线斜率为tan(-45°)时,其倾斜角为135°.
(3)两直线的斜率相等,则其倾斜角一定相等.
答案 (1)× (2)× (3)× (4)√
2.(2018·衡水调研)直线x-y+1=0的倾斜角为( )
A.30° B.45° C.120° D.150°
解析 由题得,直线y=x+1的斜率为1,设其倾斜角为α,则tan α=1,又0°≤α<180°,故α=45°,故选B.
答案 B
3.如果A·C<0,且B·C<0,那么直线Ax+By+C=0不通过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
解析 由已知得直线Ax+By+C=0在x轴上的截距->0,在y轴上的截距
->0,故直线经过第一、二、四象限,不经过第三象限.
答案 C
4.(必修2P89B5改编)若过两点A(-m,6),B(1,3m)的直线的斜率为12,则直线的方程为 .
解析 由题意得=12,解得m=-2,∴A(2,6),
∴直线AB的方程为y-6=12(x-2),
整理得12x-y-18=0.
答案 12x-y-18=0
5.(必修2P100A9改编)过点P(2,3)且在两轴上截距相等的直线方程为 .
解析 当纵、横截距均为0时,直线方程为3x-2y=0;
当纵、横截距均不为0时,设直线方程为+=1,则+=1,解得a=5.所以直线方程为x+y-5=0.
答案 3x-2y=0或x+y-5=0
考点一 直线的倾斜角与斜率(典例迁移)
【例1】 (1)直线2xcos α-y-3=0的倾斜角的取值范围是( )
A. B.
C. D.
(2)(一题多解)直线l过点P(1,0),且与以A(2,1),B(0,)为端点的线段有公共点,则直线l斜率的取值范围为 .
解析 (1)直线2xcos α-y-3=0的斜率k=2cos α,
因为α∈,所以≤cos α≤,
因此k=2·cos α∈[1,].
设直线的倾斜角为θ,则有tan θ∈[1,].
又θ∈[0,π),所以θ∈,
即倾斜角的取值范围是.
(2)法一 设PA与PB的倾斜角分别为α,β,直线PA的斜率是kAP=1,直线PB的斜率是kBP=-,当直线l由PA变化到与y轴平行的位置PC时,它的倾斜角由α增至90°,斜率的取值范围为[1,+∞).
当直线l由PC变化到PB的位置时,它的倾斜角由90°增至β,斜率的变化范围是(-∞,-].
故斜率的取值范围是(-∞,-]∪[1,+∞).
法二 设直线l的斜率为k,则直线l的方程为
y=k(x-1),即kx-y-k=0.
∵A,B两点在直线l的两侧或其中一点在直线l上,
∴(2k-1-k)(--k)≤0,
即(k-1)(k+)≥0,解得k≥1或k≤-.
即直线l的斜率k的取值范围是
(-∞,-]∪[1,+∞).
答案 (1)B (2)(-∞,-]∪[1,+∞)
【迁移探究1】 若将例1(2)中P(1,0)改为P(-1,0),其他条件不变,求直线l斜率的取值范围.
解 设直线l的斜率为k,则直线l的方程为
y=k(x+1),即kx-y+k=0.
∵A,B两点在直线l的两侧或其中一点在直线l上,
∴(2k-1+k)(-+k)≤0,
即(3k-1)(k-)≤0,解得≤k≤.
即直线l的斜率的取值范围是.
【迁移探究2】 若将例1(2)中的B点坐标改为B(2,-1),其他条件不变,求直线l倾斜角的范围.
解 由例1(2)知直线l的方程kx-y-k=0,
∵A,B两点在直线l的两侧或其中一点在直线l上,
∴(2k-1-k)(2k+1-k)≤0,
即(k-1)(k+1)≤0,解得-1≤k≤1.
即直线l倾斜角的范围是∪.
规律方法 1.在分析直线的倾斜角和斜率的关系时,要根据正切函数k=tan α的单调性,当α取值在,即由0增大到时,k由0增大到+∞,当α取值在时,即由增大到π(α≠π)时,k由-∞增大到0.
2.斜率的两种求法
(1)定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k=tan α求斜率.
(2)公式法:若已知直线上两点A(x1,y1),B(x2,y2),一般根据斜率公式k=(x1≠x2)求斜率.
【训练1】 (2018·惠州一调)直线xsin α+y+2=0的倾斜角的取值范围是( )
A.[0,π) B.∪
C. D.∪
解析 设直线的倾斜角为θ,则有tan θ=-sin α.因为sin α∈[-1,1],所以-1≤tan θ≤1,又θ∈[0,π),所以0≤θ≤或≤θ<π,故选B.
答案 B
考点二 直线方程的求法
【例2】 根据所给条件求直线的方程:
(1)直线过点(-4,0),倾斜角的正弦值为;
(2)直线过点(-3,4),且在两坐标轴上的截距之和为12;
(3)直线过点(5,10),且到原点的距离为5.
解 (1)由题设知,该直线的斜率存在,故可采用点斜式.
设倾斜角为α,则sin α=(0≤α<π),
从而cos α=±,则k=tan α=±.
故所求直线方程为y=±(x+4).
即x+3y+4=0或x-3y+4=0.
(2)由题设知纵、横截距不为0,设直线方程为+=1,
又直线过点(-3,4),
从而+=1,解得a=-4或a=9.
故所求直线方程为4x-y+16=0或x+3y-9=0.
(3)当斜率不存在时,所求直线方程为x-5=0满足题意;
当斜率存在时,设其为k,
则所求直线方程为y-10=k(x-5),
即kx-y+10-5k=0.
由点线距离公式,得=5,解得k=.
故所求直线方程为3x-4y+25=0.
综上知,所求直线方程为x-5=0或3x-4y+25=0.
规律方法 1.在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.
2.对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).
【训练2】 求适合下列条件的直线方程:
(1)经过点P(4,1),且在两坐标轴上的截距相等;
(2)经过点A(-1,-3),倾斜角等于直线y=3x的倾斜角的2倍;
(3)经过点B(3,4),且与两坐标轴围成一个等腰直角三角形.
解 (1)设直线l在x,y轴上的截距均为a,
若a=0,即l过点(0,0)和(4,1),
∴l的方程为y=x,即x-4y=0.
若a≠0,则设l的方程为+=1,
∵l过点(4,1),∴+=1,
∴a=5,∴l的方程为x+y-5=0.
综上可知,直线l的方程为x-4y=0或x+y-5=0.
(2)由已知:设直线y=3x的倾斜角为α ,则所求直线的倾斜角为2α.
∵tan α=3,∴tan 2α==-.
又直线经过点A(-1,-3),
因此所求直线方程为y+3=-(x+1),
即3x+4y+15=0.
(3)由题意可知,所求直线的斜率为±1.
又过点(3,4),由点斜式得y-4=±(x-3).
所求直线的方程为x-y+1=0或x+y-7=0.
考点三 直线方程的综合应用
【例3】 已知直线l:kx-y+1+2k=0(k∈R).
(1)证明:直线l过定点;
(2)若直线不经过第四象限,求k的取值范围;
(3)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S(O为坐标原点),求S的最小值并求此时直线l的方程.
(1)证明 直线l的方程可化为k(x+2)+(1-y)=0,
令解得
∴无论k取何值,直线总经过定点(-2,1).
(2)解 由方程知,当k≠0时直线在x轴上的截距为-,在y轴上的截距为1+2k,要使直线不经过第四象限,则必须有解得k>0;
当k=0时,直线为y=1,符合题意,故k的取值范围是[0,+∞).
(3)解 由题意可知k≠0,再由l的方程,
得A,B(0,1+2k).
依题意得解得k>0.
∵S=·|OA|·|OB|=··|1+2k|
=·=
≥×(2×2+4)=4,
“=”成立的条件是k>0且4k=,即k=,
∴Smin=4,此时直线l的方程为x-2y+4=0.
规律方法 1.含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.
2.求解与直线方程有关的最值问题,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式求解最值.
【训练3】 (一题多解)已知直线l过点P(3,2),且与x轴、y轴的正半轴分别交于A,B两点,如图所示,求△ABO的面积的最小值及此时直线l的方程.
解 法一 设直线方程为+=1(a>0,b>0),
点P(3,2)代入得+=1≥2,得ab≥24,
从而S△ABO=ab≥12,
当且仅当=时等号成立,这时k=-=-,
从而所求直线方程为2x+3y-12=0.
法二 依题意知,直线l的斜率k存在且k<0.
则直线l的方程为y-2=k(x-3)(k<0),
且有A,B(0,2-3k),
∴S△ABO=(2-3k)
=≥
=×(12+12)=12.
当且仅当-9k=,即k=-时,等号成立,
即△ABO的面积的最小值为12.
故所求直线的方程为2x+3y-12=0.
基础巩固题组
(建议用时:25分钟)
一、选择题
1.直线x=的倾斜角等于( )
A.0 B. C. D.π
解析 由直线x=,知倾斜角为.
答案 C
2.如图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则( )
A.k1
3.(2018·安阳模拟)若平面内三点A(1,-a),B(2,a2),C(3,a3)共线,则a=( )
A.1±或0 B.或0
C. D.或0
解析 由题意知kAB=kAC,即=,即a(a2-2a-1)=0,解得a=0或a=1±.
答案 A
4.过点(2,1)且倾斜角比直线y=-x-1的倾斜角小的直线方程是( )
A.x=2 B.y=1 C.x=1 D.y=2
解析 ∵直线y=-x-1的斜率为-1,则倾斜角为,依题意,所求直线的倾斜角为-=,
∴斜率不存在,
∴过点(2,1)的所求直线方程为x=2.
答案 A
5.直线x+(a2+1)y+1=0的倾斜角的取值范围是( )
A. B.
C.∪ D.∪
解析 ∵直线的斜率k=-,∴-1≤k<0,则倾斜角的范围是.
答案 B
6.(2018·广州质检)若直线l与直线y=1,x=7分别交于点P,Q,且线段PQ的中点坐标为(1,-1),则直线l的斜率为( )
A. B.- C.- D.
解析 依题意,设点P(a,1),Q(7,b),则有解得
从而可知直线l的斜率为=-.
答案 B
7.(2018·西安调研)在同一平面直角坐标系中,直线l1:ax+y+b=0和直线l2:bx+y+a=0有可能是( )
解析 当a>0,b>0时,-a<0,-b<0.选项B符合.
答案 B
8.(2018·郑州一模)已知直线l的斜率为,在y轴上的截距为另一条直线x-2y-4=0的斜率的倒数,则直线l的方程为( )
A.y=x+2 B.y=x-2
C.y=x+ D.y=-x+2
解析 ∵直线x-2y-4=0的斜率为,∴直线l在y轴上的截距为2,∴直线l的方程为y=x+2,故选A.
答案 A
二、填空题
9.已知三角形的三个顶点A(-5,0),B(3,-3),C(0,2),则BC边上中线所在的直线方程为 .
解析 BC的中点坐标为,∴BC边上中线所在直线方程为=,即x+13y+5=0.
答案 x+13y+5=0
10.已知直线l过坐标原点,若直线l与线段2x+y=8(2≤x≤3)有公共点,则直线l的斜率的取值范围是 .
解析 设直线l与线段2x+y=8(2≤x≤3)的公共点为P(x,y).
则点P(x,y)在线段AB上移动,且A(2,4),B(3,2),
设直线l的斜率为k.
又kOA=2,kOB=.
如图所示,可知≤k≤2.
∴直线l的斜率的取值范围是.
答案
11.过点M(3,-4),且在两坐标轴上的截距相等的直线的方程为 .
解析 若直线过原点,则k=-,
所以y=-x,即4x+3y=0.
若直线不过原点,设直线方程为+=1,
即x+y=a.则a=3+(-4)=-1,
所以直线的方程为x+y+1=0.
答案 4x+3y=0或x+y+1=0
12.设直线l:(a-2)x+(a+1)y+6=0,则直线l恒过定点 .
解析 直线l的方程变形为a(x+y)-2x+y+6=0,
由解得
所以直线l恒过定点(2,-2).
答案 (2,-2)
能力提升题组
(建议用时:10分钟)
13.已知直线l过点(1,0),且倾斜角为直线l0:x-2y-2=0的倾斜角的2倍,则直线l的方程为( )
A.4x-3y-3=0 B.3x-4y-3=0
C.3x-4y-4=0 D.4x-3y-4=0
解析 由题意可设直线l0,l的倾斜角分别为α,2α,因为直线l0:x-2y-2=0的斜率为,则tan α=,
所以直线l的斜率k=tan 2α===,所以由点斜式可得直线l的方程为y-0=(x-1),
即4x-3y-4=0.
答案 D
14.(2018·成都诊断)设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处的切线倾斜角的取值范围为,则点P横坐标的取值范围为( )
A. B.[-1,0]
C.[0,1] D.
解析 由题意知y′=2x+2,设P(x0,y0),则k=2x0+2.因为曲线C在点P处的切线倾斜角的取值范围为,则0≤k≤1,即0≤2x0+2≤1,故-1≤x0≤-.
答案 A
15.(2018·福州模拟)若直线ax+by=ab(a>0,b>0)过点(1,1),则该直线在x轴、y轴上的截距之和的最小值为 .
解析 ∵直线ax+by=ab(a>0,b>0)过点(1,1),
∴a+b=ab,即+=1,
∴a+b=(a+b)
=2++≥2+2=4,
当且仅当a=b=2时上式等号成立.
∴直线在x轴、y轴上的截距之和的最小值为4.
答案 4
16.在平面直角坐标系xOy中,设A是半圆O:x2+y2=2(x≥0)上一点,直线OA的倾斜角为45°,过点A作x轴的垂线,垂足为H,过H作OA的平行线交半圆于点B,则直线AB的方程是 .
解析 直线OA的方程为y=x,代入半圆方程得A(1,1),
∴H(1,0),直线HB的方程为y=x-1,
代入半圆方程得B.
所以直线AB的方程为=,
即x+y--1=0.
答案 x+y--1=0
相关资料
更多